分析 (1)連結(jié)AC、EF,證明EF∥PC,利用直線與平面平行的判定定理證明EF∥平面PAC,
(2)求出對(duì)面三角形EAD的面積,利用等體積法轉(zhuǎn)化求解幾何體的體積即可.
解答 解:(1)證明:連結(jié)AC、EF
∵點(diǎn)E、F分別是邊BC、PB的中點(diǎn)
∴EF∥PC…(4分).
又EF?平面PAC,PC?平面PAC…(5分)
∴當(dāng)點(diǎn)E是BC的中點(diǎn)時(shí),EF∥平面PAC…(6分)
(2)∵PA⊥平面ABCD,且四邊形ABCD為矩形.
∴${S_{△EAD}}=\frac{1}{2}AD•AB=1$,…(9分)
∴${V_{E-PAD}}={V_{P-EAD}}=\frac{1}{3}{S_{EAD}}•PA=\frac{1}{3}$…(12分)
點(diǎn)評(píng) 本題考查直線與平面平行的判定定理以及幾何體的體積的求法,考查空間想象能力以及計(jì)算能力,轉(zhuǎn)化思想的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3+4i | B. | 3-4i | C. | 5-4i | D. | 5+4i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 5 | C. | $\sqrt{13}$ | D. | 13 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com