1.如圖,已知PA⊥⊙O所在的平面,AB是⊙O的直徑,C是⊙O上一點(diǎn),且PA=AC,點(diǎn)E為PC的中點(diǎn).
(1)求證:△PBC是直角三角形;
(2)求證:AE⊥平面PBC.

分析 (1)根據(jù)底面是圓,得到BC⊥AC,再根據(jù)PA⊥平面ABC得到PA⊥BC,即可證明BC⊥平面PAC,從而可證BC⊥PC,即可得證.
(2)由(1)可證BC⊥AE,由PA=AC,點(diǎn)E為PC的中點(diǎn),可證PC⊥AE,即可得證AE⊥平面PBC.

解答 證明:(1)∵PA⊥⊙O所在的平面,BC?⊙O所在的平面,
∴PA⊥BC,
又∵AB是⊙O的直徑,C是⊙O上一點(diǎn),
∴AC⊥BC,
∵PA∩AC=A,
∴BC⊥平面PAC,
∴BC⊥PC,
∴△PBC是直角三角形.
(2)∵由(1)可得BC⊥平面PAC.
又∵AE在平面PAC內(nèi),
∴BC⊥AE.
∵PA=AC,點(diǎn)E為PC的中點(diǎn)
∴PC⊥AE,且PC∩BC=C,
∴AE⊥平面PBC.

點(diǎn)評 本題綜合考查了線面垂直的判定與性質(zhì)定理等基礎(chǔ)知識與基本技能方法,考查了空間想象能力、推理能力和計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,PA⊥平面ABCD,四邊形ABCD為矩形,PA=AB=1,AD=2,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動.
(1)當(dāng)點(diǎn)E為BC的中點(diǎn)時,證明:EF∥平面PAC;
(2)求三棱錐E-PAD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.m變化時,兩平行線3x-4y+m-1=0和3x一4y+m2=0之間距離的最小值等于$\frac{3}{20}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在等比數(shù)列{an}中,
(1)若Sn=189,q=2,an=96,求a1和n;
(2)若a1+a3=10,a4+a6=$\frac{5}{4}$,求a4和S5
(3)若q=2,S4=1,求S8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)y=lnsin(-2x+$\frac{π}{3}$)的單調(diào)遞減區(qū)間為(kπ-$\frac{π}{12}$,kπ+$\frac{π}{6}$),k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)$\overrightarrow{a}$=(4,3),$\overrightarrow{a}$在$\overrightarrow$上的投影為$\frac{5\sqrt{2}}{2}$,$\overrightarrow$在x軸上的投影為2,且|$\overrightarrow$|<14,則$\overrightarrow$為(2,-$\frac{2}{7}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知A(a,2),B(1,b)為平面直角坐標(biāo)系中第一象限的兩點(diǎn),C(4,-1),O為坐標(biāo)原點(diǎn),若$\overrightarrow{OA}$與$\overrightarrow{OB}$在$\overrightarrow{OC}$方向上的投影相同,則2$\sqrt{a}$+$\sqrt$的最大值為( 。
A.$\sqrt{3}$B.3C.2$\sqrt{3}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)集合A={(x,y)|x2+y2=16,x∈Z,y∈Z},則集合A的子集個數(shù)為( 。
A.8B.32C.16D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$-2ax+1+lnx
(Ⅰ)當(dāng)a=0時,若函數(shù)f(x)在其圖象上任意一點(diǎn)A處的切線斜率為k,求k的最小值,并求此時的切線方程;
(Ⅱ)若函數(shù)f(x)的極大值點(diǎn)為x1,證明:x1lnx1-ax12>-1.

查看答案和解析>>

同步練習(xí)冊答案