分析 原題意可轉(zhuǎn)化為$\frac{1}{x+z}+\frac{8(x+z)}{y+z}$=$\frac{(x+z)+2(y+z)}{x+z}$+$\frac{8(x+z)}{y+z}$=1+2[$\frac{y+z}{x+z}$+$\frac{4(x+z)}{y+z}$].利用基本不等式即可求出.
解答 解:∵正數(shù) x,y,z 滿足 x+2y+3z=1,
∴(x+z)+2(y+z)=1,
∴$\frac{1}{x+z}+\frac{8(x+z)}{y+z}$=$\frac{(x+z)+2(y+z)}{x+z}$+$\frac{8(x+z)}{y+z}$=1+2[$\frac{y+z}{x+z}$+$\frac{4(x+z)}{y+z}$]≥1+8=9,
當且僅當y+z=2(x+z)=$\frac{2}{5}$時取等號,
故$\frac{1}{x+z}+\frac{8(x+z)}{y+z}$的最小值為9,
故答案為:9
點評 本題考查了基本不等式的應用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10 | B. | 9 | C. | 8 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 7 | C. | 4 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{10}$ | B. | $\frac{3}{5}$ | C. | $\frac{7}{10}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com