分析 把已知等式變形,然后利用三角換元,借助于輔助角公式化簡求得答案.
解答 解:由x2+4y2=5,得$(\frac{x}{\sqrt{5}})^{2}+(\frac{2y}{\sqrt{5}})^{2}=1$,
令$\frac{x}{\sqrt{5}}=cosθ,\frac{2y}{\sqrt{5}}=sinθ$,得$x=\sqrt{5}cosθ,y=\frac{\sqrt{5}}{2}sinθ$,
∴$x+y=\frac{\sqrt{5}}{2}sinθ+\sqrt{5}cosθ$=$\frac{5}{2}sin(θ+α)$(tanα=2,α為銳角).
∴x+y的最小值為-$\frac{5}{2}$,此時sin(θ+α)=-1,即θ+α=$-\frac{π}{2}+2kπ$,k∈Z.
$θ=-\frac{π}{2}-α+2kπ$,k∈Z.
則x=$\sqrt{5}cosθ=\sqrt{5}cos(-\frac{π}{2}-α+2kπ)$=$\sqrt{5}cos(\frac{π}{2}+α)=-\sqrt{5}sinα$=$-\sqrt{5}×\frac{2}{\sqrt{5}}=-2$.
∴y=-$\frac{1}{2}$,最小值點(diǎn)為($-2,-\frac{1}{2}$).
故答案為:$-\frac{5}{2}$;($-2,-\frac{1}{2}$).
點(diǎn)評 本題考查函數(shù)最值的求法,訓(xùn)練了換元法,屬中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2)∪(1,+∞) | B. | (-∞,-1)∪(-1,1)∪(3,+∞) | C. | (-∞,-1)∪(-1,0)∪(2,+∞) | D. | (-∞,-2)∪(1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,1) | B. | (0,1) | C. | (-2,2) | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>-4 | B. | a≥-4 | C. | a>1 | D. | a≥1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com