4.已知$\left\{\begin{array}{l}{|x|+x+y=10}\\{|y|+x-y=12}\end{array}\right.$,求x+y的值.

分析 分類討論x與y正負,利用絕對值的代數(shù)意義整理后,求出方程組的解即可.

解答 解:當(dāng)x>0,y>0時,方程組整理得:$\left\{\begin{array}{l}{2x+y=10}\\{x=12}\end{array}\right.$,
解得:x=12,y=-14,不合題意;
當(dāng)x>0,y<0時,方程組整理得:$\left\{\begin{array}{l}{2x+y=10}\\{x-2y=12}\end{array}\right.$,
解得:x=6.4,y=-2.8;
當(dāng)x<0,y>0時,方程組整理得:$\left\{\begin{array}{l}{y=10}\\{x=12}\end{array}\right.$,不合題意;
當(dāng)x<0,y<0時,方程組整理得:$\left\{\begin{array}{l}{y=10}\\{x-2y=12}\end{array}\right.$,不合題意,
綜上,方程組的解為x=6.4,y=-2.8,
則x+y=3.6.

點評 此題考查了解二元一次方程組,利用了消元的思想,消元的方法有:代入消元法與加減消元法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)復(fù)數(shù)z=1+i,則復(fù)數(shù)$\frac{2}{z}$+z2的共軛復(fù)數(shù)為1-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.函數(shù)f(x)=2x3-6x+k,x∈R.
(1)當(dāng)k=5時,求函數(shù)f(x)在點(2,f(2))處的切線方程.
(2)若函數(shù)f(x)=2x3-6x+k在R上只有一個零點,求常數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知:△ABC中,角A,B,C所對應(yīng)的邊為a,b,c,其中B=60°,c=4.
(Ⅰ)若C=45°,求b;
(Ⅱ)若b=2$\sqrt{7}$,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)L為曲線C:y=$\frac{lnx}{x}$在點(1,0)處的切線.
(1)求L的方程;
(2)證明:f(x)≤x-1在定義域內(nèi)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知直線l1:y=2x,直線l2過定點A(3,2)且與x軸上交于點P(a,0)(a>2),則直線l1,l2與x軸正半軸圍成的三角形面積的最小值=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知$\overrightarrow{a}$=(2cosx,sinx),$\overrightarrow$=(cosx,sinx-$\sqrt{3}$cosx),設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(1)求f(x)圖象的對稱軸方程;
(2)求f(x)在[$\frac{5π}{12}$,π]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知存在唯一的實數(shù)對(p,q),使不等式|$\sqrt{{r}^{2}-{x}^{2}}$-px-q|≤t(其中r>0,t>0)對?x∈[0,r]恒成立,則$\frac{t}{r}$=$\frac{\sqrt{2}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)y=3cosx (0≤x≤2π)的圖象和直線y=3圍成一個封閉的平面圖形,則其面積為6π..

查看答案和解析>>

同步練習(xí)冊答案