13.設向量$\overrightarrow a,\overrightarrow b$均為單位向量,且|$\overrightarrow a+2\overrightarrow b$|=$\sqrt{3}$,則$\overrightarrow a$與$\overrightarrow b$的夾角為(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{3π}{4}$D.$\frac{2π}{3}$

分析 將等式平方,利用向量的平方等于模的平方,由數(shù)量積公式可求.

解答 解:向量$\overrightarrow a,\overrightarrow b$均為單位向量,且|$\overrightarrow a+2\overrightarrow b$|=$\sqrt{3}$,則$\overrightarrow a$與$\overrightarrow b$的夾角為θ,
則|$\overrightarrow a+2\overrightarrow b$|2=($\sqrt{3}$)2,
則|$\overrightarrow{a}$|2+4|$\overrightarrow$|2+4|$\overrightarrow{a}$|•|$\overrightarrow$|cosθ=3,
∴4cosθ=-2,
∴cosθ=-$\frac{1}{2}$,
∵0≤θ≤π,
∴θ=$\frac{2π}{3}$,
故選:D.

點評 本題考查了向量的平方與模的平方相等以及向量數(shù)量積公式的運用求向量的夾角.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.某工廠近5年內(nèi)生產(chǎn)總值從a元開始以每年比上年產(chǎn)值增加10%,則這個廠近5年內(nèi)的總產(chǎn)值為(  )
A.1.14aB.1.15aC.10a(1.16-1)D.10a(1.15-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.變量x,y具有線性相關關系,當x取值為16,14,12,8時,通過觀測得到y(tǒng)的值分別為11,9,8,5.若在實際問題中,預測當y=10時,x的近似值為( 。
(參考公式:$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{{x_i}^2}-n{{\overline x}^2}}}$,$\hat a$=$\overline{y}$-$\hat b$$\overline{x}$)
A.14B.15C.16D.17

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若f(x)=cos(2x+φ)+b,對任意實數(shù)x都有f(x)=f($\frac{π}{3}$-x),f($\frac{2π}{3}$)=-1,則實數(shù)b的值為( 。
A.-2或0B.0或1C.±1D.±2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.如下命題中:
①在△ABC中,若sinA>sinB,則A>B;
②若滿足條件C=60°,AB=$\sqrt{3}$,BC=a的△ABC有兩個,則$\sqrt{2}<a<\sqrt{3}$;
③在等比數(shù)列{an}中,若其前n項和Sn=3n+a,則實數(shù)a=-1;
④若向量$\vec a=(1,1)$,$\vec b=(1,-2)$,則向量$\vec a$在向量$\vec b$方向上的投影是$\frac{{\sqrt{5}}}{5}$;
⑤空間中長度分別為1,2,3的線段OA、OB、OC兩兩相互垂直,若四點O、A、B、C在球面上,則該球的體積為$\frac{{7\sqrt{14}}}{3}$π;
其中正確的命題序號有①③⑤(把你認為正確的命題序號填在橫線上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知離散型隨機變量X服從二項分布X~B(n,p)且E(X)=12,D(X)=4,則n與p的值分別為( 。
A.$18,\frac{2}{3}$B.$18,\frac{1}{3}$C.$12,\frac{2}{3}$D.$12,\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.正方體ABCD-A'B'C'D'中,異面直線AD'與BD 所成的角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,△ABC內(nèi)接于⊙O,AB為其直徑,CH⊥AB于H延長后交⊙O于D,連接DB并延長交過C點的直線于P,且CB平分∠DCP.
(1)求證:PC是⊙O的切線;
(2)若AC=4,BC=3,求$\frac{PC}{PB}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.語文成績服從正態(tài)分布N(100,17.52),數(shù)學成績的頻率分布直方圖如圖:
(1)如果成績大于135的為特別優(yōu)秀,這500名學生中本次考試語文、數(shù)學特別優(yōu)秀的大約各多少人?
(2)如果語文和數(shù)學兩科都特別優(yōu)秀的共有6人,從(1)中的這些同學中隨機抽取3人,設三人中兩科都特別優(yōu)秀的有x人,求x的分布列和數(shù)學期望.
(3)根據(jù)以上數(shù)據(jù),是否有99%的把握認為語文特別優(yōu)秀的同學,數(shù)學也特別優(yōu)秀.
①若x~N(μ,σ2),則P(μ-σ<x≤μ+σ)=0.68,P(μ-2σ<x≤μ+2σ)=0.96.
②k2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$;

P(k2≥k00.500.400.0100.0050.001
k00.4550.7086.6357.87910.828

查看答案和解析>>

同步練習冊答案