【題目】已知拋物線的焦點為F,F作兩條互相垂直的弦AB、CD,AB、CD的中點分別為M、N。

(1)求證直線MN必過定點;

(2)分別以ABCD為直徑作圓,求兩圓相交弦中點H的軌跡方程。

【答案】(1)見解析;(2)

【解析】

(1)易知F(1,0).

,代入,得.

易得,.

因為CD⊥AB,所以將點M坐標中的k換為,即得.

,

.

故不論k為何值,直線MN恒過定點T(3, 0).

(2)由拋物線的性質知,都與拋物線的準線x=-1相切,所以,的半徑分別為.從而,,

.

兩式相減并整理,得公共弦所在直線方程為.

,

故公共弦所在直線過原點O.

所以,∠OHT=90°.

于是,點H的軌跡是以OT為直徑的圓(除去直徑的兩個端點),其軌跡方程為

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓:在軸上的一個焦點,與短軸兩個端點的連線互相垂直,且右焦點坐標為

1)求橢圓的方程;

2)設直線與圓相切,和橢圓交于,兩點,為原點,線段,分別和圓交于兩點,設,的面積分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】A4紙是生活中最常用的紙規(guī)格.A系列的紙張規(guī)格特色在于:①A0、A1A2、A5,所有尺寸的紙張長寬比都相同.②在A系列紙中,前一個序號的紙張以兩條長邊中點連線為折線對折裁剪分開后,可以得到兩張后面序號大小的紙,比如1A0紙對裁后可以得到2A1紙,1A1紙對裁可以得到2A2紙,依此類推.這是因為A系列紙張的長寬比為1這一特殊比例,所以具備這種特性.已知A0紙規(guī)格為84.1厘米×118.9厘米.118.9÷84.1≈1.41≈,那么A4紙的長度為( 。

A.厘米B.厘米C.厘米D.厘米

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某超市,隨機調查了100名顧客購物時使用手機支付的情況,得到如下的列聯(lián)表,已知從其中使用手機支付的人群中隨機抽取1人,抽到青年的概率為.

青年

中老年

合計

使用手機支付

60

不使用手機支付

28

合計

100

1)根據(jù)已知條件完成列聯(lián)表,并根據(jù)此資料判斷是否有99.9%的把握認為超市購物用手機支付與年齡有關”.

2)現(xiàn)按照使用手機支付不使用手機支付進行分層抽樣,從這100名顧客中抽取容量為5的樣本,求從樣本中任選3人,則3人中至少2人使用手機支付的概率.

(其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合S={1,2,3,4,5,6},一一映射f:S→S滿足條件對于任意的x∈S,f(f(f(x)))=x。則滿足條件的映射f的個數(shù)是( )。

A. 81 B. 80 C. 40 D. 27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓形紙片的圓心為O,半徑為5 cm,該紙片上的等邊三角形ABC的中心為O。D、EF為圓O上的點,△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形。沿虛線剪開后,分別以BC,CAAB為折痕折起△DBC,△ECA,△FAB,使得D、EF重合,得到三棱錐。當△ABC的邊長變化時,所得三棱錐體積(單位:cm3)的最大值為_______。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)需要設計一個倉庫,它由上下兩部分組成,上部的形狀是正四棱錐PA1B1C1D1,下部的形狀是正四棱柱ABCDA1B1C1D1(如圖所示),并要求正四棱柱的高O1O是正四棱錐的高PO1的4倍.

(1)若AB=6 m,PO1=2 m,則倉庫的容積是多少?

(2)若正四棱錐的側棱長為6 m,則當PO1為多少時,倉庫的容積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】AB,CD為平面內的四點,且A(1,3),B(2,–2),C(4,1).

(1)若,求D點的坐標;

(2)設向量,,若k+3平行,求實數(shù) 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次購物抽獎活動中,假設某10張券中有一等獎券2張,每張可獲價值50元的獎品;有二等獎券2張,每張可獲價值10元的獎品;其余6張沒有獎.某顧客從此10張獎券中任抽2張,求:

1)該顧客中獎的概率;

2)該顧客獲得的獎品總價值X元的概率分布列.

查看答案和解析>>

同步練習冊答案