、(12分)已知數(shù)列  的前n項和Sn=2n2+2n數(shù)列  的前 n 項和 Tn=2-bn
(1)求數(shù)列 的通項公式;
(2)設(shè)Cn=an2·bn,證明當且僅當n≥3時,Cn+1<Cn

(1)a1=S1=4
當n≥2時,an=Sn-Sn-1=2n(n+1)-2(n-1)n=4n
∴an=4n   (n∈N*)
將n=1代入Tn=2-bn得b1=2-b1
∴b1=1
當n≥2時,Tn-1=2bn-1
Tn=2-bn
∴bn=Tn-Tn-1=-bn+bn-1
∴bnbn-1
 是以1為首項,為公比的等比數(shù)列
∴bn=()n-1    (n∈N*)
(2)由Cn = a·b = n2·25-n
=  2
當且僅當n≥3時,1+
即Cn+1<Cn

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列的前n項和Sn=n2-9n,第k項滿足5<ak<8,則k的值為
8
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列的前n項和為Sn=4n2+1,則a1和a10的值分別為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列的前n項和為Sn,且滿足an=
1
2
Sn+1(n∈N*)

(1)求數(shù)列{an}的通項公式;
(2)若bn=log2an,cn=
1
bnbn+1
,且數(shù)列{cn}的前n項和為Tn,求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年吉林省吉林市高三上學期期末考試理科數(shù)學試卷(解析版) 題型:填空題

已知數(shù)列{}的前n項和為,,則       

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年四川省高三第十六次月考理科數(shù)學試卷(解析版) 題型:解答題

(滿分12分)已知數(shù)列的前n項和滿足n為正整數(shù)).

(1)令,求證數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;

(2)令,試比較的大小,并予證明.

 

查看答案和解析>>

同步練習冊答案