15.橢圓$\frac{x^2}{9}$+$\frac{y^2}{4}$=1上一點P到一個焦點的距離為1,那么它到另一個焦點的距離為(  )
A.2B.3C.4D.5

分析 直接利用橢圓的定義求解即可.

解答 解:由橢圓$\frac{x^2}{9}$+$\frac{y^2}{4}$=1,
得a=3,2a=6,
由橢圓的定義可知:橢圓上一點P到橢圓的一個焦點的距離為1,則P到另一個焦點的距離為:5.
故選:D.

點評 本題考查橢圓的基本性質(zhì),定義的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若sinA=$\frac{1}{3}$,b=$\sqrt{3}$sinB,則a=$\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)y=f(x)的圖象與g(x)=lnx的圖象關(guān)于直線y=x對稱,則f(x)=ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.寫出函數(shù)y=-(x-1)2單調(diào)增區(qū)間(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知橢圓$\frac{x^2}{25}$+$\frac{y^2}{9}=1$上一點M到左焦點F1的距離是8,則M到右準(zhǔn)線的距離為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(1)已知雙曲線的漸近線為3x+4y=0且經(jīng)過點(8,3$\sqrt{3}$),求雙曲線的方程;
(2)若(1)中的雙曲線被點A(8,3)平分的弦為MN,求MN所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知x,y滿足不等式組$\left\{\begin{array}{l}{x≥1}\\{x-y-1≤0}\\{2x+y-5≤0}\end{array}\right.$,則z=-3x-y的最小值為( 。
A.-3B.-7C.-6D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2-x+c
(1)求f(x)在[0,1]的最大值和最小值;
(2)求證:對任意x1,x2∈[0,1],總有|f(x1)-f(x2)|≤$\frac{1}{4}$;
(3)若函數(shù)y=f(x)在區(qū)間[0,2]上有2個零點,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.求值:arcsin(cos$\frac{4π}{7}$)=-$\frac{π}{14}$.

查看答案和解析>>

同步練習(xí)冊答案