12.過拋物線y2=2px(p>0)的焦點(diǎn)F作傾斜角為60°的直線l交拋物線于A,B兩點(diǎn),且|AF|>|BF|,則$\frac{|AF|}{|BF|}$的值為( 。
A.3B.2C.$\frac{3}{2}$D.$\frac{4}{3}$

分析 首先,寫出拋物線的焦點(diǎn)坐標(biāo),然后,求解直線的方程,利用焦半徑公式求解比值.

解答 解:拋物線y2=2px(p>0)的焦點(diǎn)坐標(biāo)為($\frac{p}{2}$,0),
∵直線l傾斜角為60°,
∴直線l的方程為:y-0=$\sqrt{3}$(x-$\frac{p}{2}$).
設(shè)直線與拋物線的交點(diǎn)為A(x1,y1)、B(x2,y2),
∴|AF|=x1+$\frac{p}{2}$,|BF|=x2+$\frac{p}{2}$,
聯(lián)立方程組,消去y并整理,得12x2-20px+3p2=0,
解得x1=$\frac{3p}{2}$,x2=$\frac{p}{6}$,
∴|AF|=x1+$\frac{p}{2}$=2p,|BF|=x2+$\frac{p}{2}$=$\frac{2p}{3}$,
∴|AF|:|BF|=3:1,
∴$\frac{|AF|}{|BF|}$的值為3.
故選:A.

點(diǎn)評 本題重點(diǎn)考查了拋物線的幾何性質(zhì)、方程、直線與拋物線的位置關(guān)系等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=ax+1-2(a>0且a≠1)的圖象恒過定點(diǎn)A,設(shè)拋物線E:y2=4x上任意一點(diǎn)M到準(zhǔn)線l的距離為d,則d+|MA|的最小值為( 。
A.5B.$\sqrt{10}$C.$\sqrt{5}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,在拋物線C上取一點(diǎn)A,過A分別向x軸和準(zhǔn)線作垂線,垂足分別為M,N,連接AF并延長交拋物線于另一點(diǎn)B,若$\sqrt{5}$AM=2AN,則線段AB的長為( 。
A.20B.40C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,在各棱長均為2的正三棱錐A-BCD中,平面α與棱AB、AD、CD、BC分別相交于點(diǎn)E、F、G、H,則四邊形EFGH的周長的最小值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^{x-2}}-3,x≥0\\ x+2,x<0\end{array}$,則f(3)=-1,若f(a)=1,則實(shí)數(shù)a=4或-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與雙曲線C2:x2-$\frac{{y}^{2}}{4}$=1有公共的焦點(diǎn),C2的一條漸近線與以C1的長軸為直徑的圓相交于A、B兩點(diǎn),若C1恰好將線段AB三等分,則橢圓C1的方程是(  )
A.$\frac{2{x}^{2}}{11}$+2y2=1B.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1C.$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{5}$=1D.$\frac{{x}^{2}}{2}$+y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≤0時(shí),f(x)=x2+2x,那么,不等式f(x)<3的解集是(-3,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知{an}是等差數(shù)列,滿足a1=2,a4=14,數(shù)列{bn}滿足b1=1,b4=6,且{an-bn}是等比數(shù)列.
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)若?n∈N*,都有bn≤bk成立,求正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知等差數(shù)列{an}的公差不為零,a1=25,且a1,a11,a13成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求a1+a4+a7+…+a3n+13;
(3)求{(30-an)•2n}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案