14.符號(hào){a}?P⊆{a,b,c}的集合P的個(gè)數(shù)是( 。
A.2B.3C.4D.5

分析 根據(jù)集合的子集和真子集的定義求出集合P即可.

解答 解:∵{a}?P⊆{a,b,c},
∴p={a,b}或{a,c}或{a,b,c},
共3個(gè),
故選:B.

點(diǎn)評(píng) 本題考查了集合的子集和真子集的定義,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在(x-$\frac{1}{{x}^{4}}$)10的展開(kāi)式中,常數(shù)項(xiàng)為( 。
A.-90B.90C.-45D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的兩焦點(diǎn)F1、F2與短軸兩端點(diǎn)構(gòu)成四邊形為正方形,又點(diǎn)M是C上任意一點(diǎn),且△MF1F2的周長(zhǎng)為2$\sqrt{2}$+2.
(1)求橢圓C的方程;
(2)若過(guò)點(diǎn)M(2,0)的直線與橢圓C相交于兩點(diǎn)A、B,設(shè)P為橢圓E上一點(diǎn),且滿(mǎn)足$\overrightarrow{OA}+\overrightarrow{OB}=t\overrightarrow{OP}$(O為坐標(biāo)原點(diǎn)),當(dāng)|AB|<$\frac{{2\sqrt{5}}}{3}$時(shí),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.有3名男生,4名女生,選其中5人排成一行,共有2520種不同的排法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若x∈(0,+∞),則(1+2x)15的二項(xiàng)展開(kāi)式中系數(shù)最大的項(xiàng)為第11項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若集合M={x|-1≤x<2},P={x|x≤a},若M∩P≠∅,則實(shí)數(shù)a的可取值構(gòu)成的集合是( 。
A.(-∞,-2)B.(-1,+∞)C.[-1,+∞)D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)=$\frac{\sqrt{4-x}}{x-1}$的定義域是( 。
A.[1,4]B.(-∞,1)∪(1,4]C.(1,4]D.(-∞,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,3(b2+c2)=3a2+2bc.
(1)若sinB=$\sqrt{2}$cosC,求tanC;
(2)若△ABC的面積S=5$\sqrt{2}$,求邊長(zhǎng)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在△ABC中,已知角A=75°,B=45°,AB=$\sqrt{6}$,則△ABC外接圓的半徑為$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案