分析 作出不等式組對應的平面區(qū)域,利用目標函數的幾何意義,進行求最值即可.
解答 解:由z=x-3y得y=$\frac{1}{3}x-\frac{z}{3}$,
作出不等式組對應的平面區(qū)域如圖(陰影部分):
平移直線y=$\frac{1}{3}x-\frac{z}{3}$,
由圖象可知當直線y=$\frac{1}{3}x-\frac{z}{3}$經過點C時,直線y=$\frac{1}{3}x-\frac{z}{3}$的截距最小,
此時z最大,
由$\left\{\begin{array}{l}{x+y=1}\\{y=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$,即C(2,-1).
代入目標函數z=x-3y,
得z=2-3×(-1)=2+3=5,
故答案為:5.
點評 本題主要考查線性規(guī)劃的基本應用,利用目標函數的幾何意義是解決問題的關鍵,利用數形結合是解決問題的基本方法.
科目:高中數學 來源: 題型:選擇題
A. | (2,3) | B. | (-∞,3) | C. | (3,+∞) | D. | [2,3) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4 | B. | $4\sqrt{3}$ | C. | 8 | D. | $8\sqrt{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2n-1 | B. | -3n+2 | C. | (-1)n+1(3n-2) | D. | (-1)n+13n-2 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com