9.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=2,|$\overrightarrow{a}$+2$\overrightarrow$|=$\sqrt{7}$.
(Ⅰ)求$\overrightarrow{a}$•$\overrightarrow$;
(Ⅱ)若向量λ$\overrightarrow{a}$+2$\overrightarrow$與向量2$\overrightarrow{a}$-$\overrightarrow$垂直,求實(shí)數(shù)λ的值.

分析 (Ⅰ)將|$\overrightarrow{a}$+2$\overrightarrow$|=$\sqrt{7}$展開(kāi).結(jié)合已知向量的模求$\overrightarrow{a}$•$\overrightarrow$;
(Ⅱ)利用向量λ$\overrightarrow{a}$+2$\overrightarrow$與向量2$\overrightarrow{a}$-$\overrightarrow$垂直,得到數(shù)量積為0,得到關(guān)于λ的方程解之,

解答 解:因?yàn)橄蛄?\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=2,|$\overrightarrow{a}$+2$\overrightarrow$|=$\sqrt{7}$.
(Ⅰ)所以|$\overrightarrow{a}$+2$\overrightarrow$|2=7,展開(kāi)整理得${\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow+4{\overrightarrow}^{2}=7$,所以$\overrightarrow{a}$•$\overrightarrow$=-3;
(Ⅱ)向量λ$\overrightarrow{a}$+2$\overrightarrow$與向量2$\overrightarrow{a}$-$\overrightarrow$垂直,(λ$\overrightarrow{a}$+2$\overrightarrow$)(2$\overrightarrow{a}$-$\overrightarrow$)=0,展開(kāi)得到$2λ{(lán)\overrightarrow{a}}^{2}-2{\overrightarrow}^{2}+(4-λ)\overrightarrow{a}•\overrightarrow=0$,所以6λ-8-3(4-λ)=0,解得λ=$\frac{20}{9}$.

點(diǎn)評(píng) 本題考查了平面向量數(shù)量積的運(yùn)算以及向量垂直的性質(zhì)運(yùn)用;注意,向量的平方與其模的平方相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知x>0,y>0,且$\frac{1}{x}$+$\frac{2}{y}$=1,若2x+y≥m恒成立,則實(shí)數(shù)m的取值范圍是(-∞,8],當(dāng)m取到最大值時(shí)x=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)M(x0,y0)是橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上一點(diǎn),A,B是其左,右頂點(diǎn),2$\overrightarrow{AM}$•$\overrightarrow{BM}$=$x_0^2$-a2,則離心率e=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{4}{5}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求M在AB的延長(zhǎng)線上,N在AD的延長(zhǎng)線上,且對(duì)角線MN過(guò)點(diǎn)C,已知AB=3米,AD=2米,記矩形AMPN的面積為S平方米.
(1)按下列要求建立函數(shù)關(guān)系;
(i)設(shè)AN=x米,將S表示為x的函數(shù);
(ii)設(shè)∠BMC=θ(rad),將S表示為θ的函數(shù).
(2)請(qǐng)你選用(1)中的一個(gè)函數(shù)關(guān)系,求出S的最小值,并求出S取得最小值時(shí)AN的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.為了滿足社區(qū)居民健身活動(dòng),某社區(qū)準(zhǔn)備在一塊大約400m×400m的接近正方形荒地上建一個(gè)健身活動(dòng)廣場(chǎng),首先要建設(shè)如圖所示的一個(gè)總面積為4000m2的矩形場(chǎng)地,其中陰影部分為通道,通道寬度均為2米,中間的三個(gè)矩形區(qū)域?qū)佋O(shè)塑膠地面作為健身運(yùn)動(dòng)場(chǎng)地(其中兩個(gè)小場(chǎng)地形狀相同),怎樣設(shè)計(jì)矩形場(chǎng)地的長(zhǎng)和寬,使塑膠運(yùn)動(dòng)場(chǎng)地占地面積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若集合P={x|1≤2x<8},Q={1,2,3},則P∩Q=(  )
A.{1,2}B.{1}C.{2,3}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若0<x<1,則$\sqrt{(x-\frac{1}{x})^{2}+4}$-$\sqrt{(x+\frac{1}{x})^{2}-4}$等于2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如果三點(diǎn)A(2m,$\frac{5}{2}$),B(4,-1),C (-4,-m)在同一條直線上,則常數(shù)m的值為$\frac{3±\sqrt{57}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)圓C:(x-3)2+(y-2)2=1(a>0)與直線y=$\frac{3}{4}$x相交于P、Q兩點(diǎn),則|PQ|=$\frac{4\sqrt{6}}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案