極坐標(biāo)為ρ=2cosθ的曲線與參數(shù)方程為
x=-1-t
y=2+t
(t為參數(shù))的直線交于A、B,則|AB|=
 
考點(diǎn):參數(shù)方程化成普通方程
專題:坐標(biāo)系和參數(shù)方程
分析:把參數(shù)方程、極坐標(biāo)方程化為直角坐標(biāo)方程,利用點(diǎn)到直線的距離公式求得弦心距,可得弦長(zhǎng).
解答:解:極坐標(biāo)方程ρ=2cosθ,即 ρ2=2ρcosθ,化為直角坐標(biāo)方程為(x-1)2+y2=1,
表示以(1,0)為圓心、半徑等于1的圓.
參數(shù)方程為
x=-1-t
y=2+t
(t為參數(shù))的直線 即 x+y-1=0,
求得弦心距d=
|1+0-1|
2
=0,可得弦長(zhǎng)等于直徑為2,
故答案為:2.
點(diǎn)評(píng):本題主要考查把參數(shù)方程化為直角坐標(biāo)方程的方法,點(diǎn)到直線的距離公式、弦長(zhǎng)公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線C:x2+9y2=9經(jīng)過伸縮變換
x′=x
y′=3y
后,得到的曲線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P是曲線C:ρ2=
3
2-cos2θ
上的一個(gè)動(dòng)點(diǎn),則P到直線l:
x=-1+
2
2
t
y=3+
2
2
t
(t為參數(shù))的最長(zhǎng)距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,直線L的參數(shù)方程為
x=
1
2
t
y=
2
2
+
3
2
t
(t為參數(shù)),則直線L的普通方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為
x=
3
cosα
y=sinα
(α為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐 標(biāo) 系,曲 線C2的極坐標(biāo)方程為ρsin(θ+
π
4
)=4
2

(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程.
(2)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn)P到C2上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)P坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

動(dòng)點(diǎn)A(sinθ+cosθ,sinθ-cosθ)(θ為參數(shù))的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程是
x=
2
2
t
y=
2
2
t+4
2
(t是參數(shù)),以原點(diǎn)O為極點(diǎn),Ox為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為p=2cos(θ+
π
4
).
(1)求圓心C的直角坐標(biāo);
(2)由直線l上的點(diǎn)向圓C引切線,求切線長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=2-t
y=
3
t
(t
為參數(shù)),P.Q分別為直線l與x軸、y軸的交點(diǎn),線段PQ的中點(diǎn)為M.
(I)求直線l的直角坐標(biāo)方程;
(Ⅱ)以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求點(diǎn)M的極坐標(biāo)和直線OM的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆四川省成都市高三10月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知復(fù)數(shù)z1=cos23°+isin23°和復(fù)數(shù)z2=cos37°+isin37°,則z1•z2為( )

A. B. C. D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案