19.設(shè)F1、F2分別是雙曲線x2-$\frac{{y}^{2}}{4}$=1的左、右焦點(diǎn),若點(diǎn)P在雙曲線上,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,則|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|等于( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{5}$D.2$\sqrt{5}$

分析 根據(jù)雙曲線的性質(zhì)求出c的值,結(jié)合向量垂直和向量和的幾何意義進(jìn)行轉(zhuǎn)化求解即可.

解答 解:由雙曲線方程得a2=1,b2=4,c2=1+4=5,
即c=$\sqrt{5}$,則焦點(diǎn)為F1(-$\sqrt{5}$,0),F(xiàn)2($\sqrt{5}$,0),
設(shè)點(diǎn)P在雙曲線C的右支上,
∵$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,
∴∠F1PF2=90°,
則F1PF2為直角三角形,
則|$\overrightarrow{P{F_1}}$+$\overrightarrow{P{F_2}|}$=|2$\overrightarrow{PO}$|=|F1F2|=2c=2$\sqrt{5}$,
故選:D.

點(diǎn)評(píng) 本題主要考查雙曲線性質(zhì)的有意義,根據(jù)向量垂直和向量和的幾何意義是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知角α的終邊經(jīng)過點(diǎn)p0(-3,-4),則cos($\frac{π}{2}$+α)的值為$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=sinx-cosx,則把函數(shù)f(x)的圖象上每個(gè)點(diǎn)的橫坐標(biāo)擴(kuò)大到原來的2倍,再向右平移$\frac{π}{3}$,得到函數(shù)g(x)的圖象,則函數(shù)(x)的一條對(duì)稱軸方程為( 。
A.x=$\frac{π}{6}$B.x=$\frac{11π}{6}$C.x=$\frac{π}{3}$D.x=$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知P為橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上一個(gè)動(dòng)點(diǎn),過P作圓(x-1)2+y2=1的兩條切線,切點(diǎn)分別為A﹑B,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范圍是[$2\sqrt{2}-3,\frac{56}{9}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.過兩點(diǎn)M(-1,2),N(3,4)的直線的斜率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知復(fù)數(shù)z=$\frac{{{i^{2016}}}}{1-i}$,則復(fù)數(shù)$\overline z$在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列說法正確的是( 。
A.命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
B.命題p:“?x∈R,sinx+cosx≤$\sqrt{2}$”,則¬p是真命題
C.“p∧q為真命題”是“p∨q為真命題”的必要不充分條件
D.“a<1”是“${log_{\frac{1}{2}}}$a>0”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.解不等式:$\frac{6}{x-2}$≤x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.作下列函數(shù)的簡圖:
(1)y=$\frac{1}{2}$(cosx+|cosx|);
(2)y=sin|x-$\frac{π}{2}$|

查看答案和解析>>

同步練習(xí)冊(cè)答案