【題目】如圖放置的邊長為2的正三角形沿軸滾動, 設(shè)頂點(diǎn)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系式是, 有下列結(jié)論:
①函數(shù)的值域是;②對任意的,都有;
③函數(shù)是偶函數(shù);④函數(shù)單調(diào)遞增區(qū)間為.
其中正確結(jié)論的序號是________. (寫出所有正確結(jié)論的序號)
說明:
“正三角形沿軸滾動”包括沿軸正方向和沿軸負(fù)方向滾動. 沿軸正方向滾動指的是先以頂點(diǎn)為中心順時針旋轉(zhuǎn), 當(dāng)頂點(diǎn)落在軸上時, 再以頂點(diǎn)為中心順時針旋轉(zhuǎn), 如此繼續(xù). 類似地, 正三角形可以沿軸負(fù)方向滾動.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以雙曲線 (a>0,b>0)上一點(diǎn)M為圓心的圓與x軸恰相切于雙曲線的一個焦點(diǎn)F,且與y軸交于P、Q兩點(diǎn).若△MPQ為銳角三角形,則該雙曲線的離心率e的范圍是( )
A.
B.( , )
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)條件,求下列曲線的方程.
(1)已知兩定點(diǎn),曲線上的點(diǎn)到距離之差的絕對值為,求曲線的方程;
(2)在 軸上的一個焦點(diǎn)與短軸兩端點(diǎn)的連線互相垂直,且焦距為的橢圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)當(dāng)時,求的單調(diào)增區(qū)間.
(2)若對任意的實(shí)數(shù)及任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求函數(shù)取得最大值時的自變量的集合并說出最大值;
(2)求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)已知點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上,且.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知點(diǎn),延長交拋物線于點(diǎn),證明:以點(diǎn)為圓心且與直線相切的圓,必與直線相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線與軸交于,兩點(diǎn),點(diǎn)的坐標(biāo)為,當(dāng)變化時,解答下列問題:
()能否出現(xiàn)的情況?說明理由.
()證明過,,三點(diǎn)的圓在軸上截得的弦長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為紀(jì)念重慶黑山谷晉升國家5A級景區(qū)五周年,特發(fā)行黑山谷紀(jì)念郵票,從2017年11月1日起開始上市.通過市場調(diào)查,得到該紀(jì)念郵票在一周內(nèi)每1張的市場價y(單位:元)與上市時間x(單位:天)的數(shù)據(jù)如下:
上市時間x天 | 1 | 2 | 6 |
市場價y元 | 5 | 2 | 10 |
(Ⅰ)分析上表數(shù)據(jù),說明黑山谷紀(jì)念郵票的市場價y(單位:元)與上市時間x(單位:天)的變化關(guān)系,并判斷y與x滿足下列哪種函數(shù)關(guān)系,①一次函數(shù);②二次函數(shù);③對數(shù)函數(shù),并求出函數(shù)的解析式;
(Ⅱ)利用你選取的函數(shù),求黑山谷紀(jì)念郵票市場價最低時的上市天數(shù)及最低的價格.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com