17.若a=20.6,b=log30.6,c=0.62,則( 。
A.b>c>aB.a>b>cC.c>b>aD.a>c>b

分析 利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性求解.

解答 解:∵a=20.6>20=1,
b=log30.6<log31=0,
c=0.62=0.36,
∴a>c>b.
故選:D.

點(diǎn)評 本題考查三個(gè)數(shù)的大小的比較,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.不等式-x2-2x+3≥0的解集為( 。
A.{x|-1≤x≤3}B.{x|x≥3或x≤-1}C.{x|-3≤x≤1}D.{x|x≤-3或x≥1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知f(x)為偶函數(shù),當(dāng)x≤0時(shí),f(x)=e-x-2-x,則曲線y=f(x)在點(diǎn)(2,3)處的切線方程是2x-y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某車間為了規(guī)定工時(shí)定額,需要確定加工某零件所花費(fèi)的時(shí)間,為此做了四次實(shí)驗(yàn),得到的數(shù)據(jù)如表:
零件的個(gè)數(shù)x(個(gè))2345
加工的時(shí)間y(小時(shí))2.5344.5
(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;
(2)求出y關(guān)于x的線性回歸方程y=$\stackrel{∧}$x+$\stackrel{∧}{a}$,并在坐標(biāo)系中畫出回歸直線;
(3)試預(yù)測加工6個(gè)零件需要多少時(shí)間?
(注:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)的導(dǎo)函數(shù)是f′(x),且f(x)的圖象如圖所示,則下列數(shù)值的大小關(guān)系正確的是( 。
A.f′(3)<f′(4)<f(4)-f(3)<0B.f′(4)<f′(3)<f(4)-f(3)<0C.f′(4)<f(4)-f(3)<f′(3)<0D.f′(3)<f(4)-f(3)<f′(4)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=|x+a|-|x-2|.
(1)當(dāng)a=1時(shí),求不等式f(x)≥2的解集;
(2)若f(x)≤|x-4|的解集包含[2,3],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=2lnx-ax2+1
(1)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍;
(2)存在實(shí)數(shù)m使得f(x)=m的兩個(gè)零點(diǎn)α、β都屬于區(qū)間[1,4],且β-α=1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.關(guān)于函數(shù)y=$\sqrt{x+1}$-$\sqrt{x-1}$的最值的說法正確的是( 。
A.既沒有最大值也沒有最小值B.沒有最小值,只有最大值$\sqrt{2}$
C.沒有最大值,只有最小值$\sqrt{2}$D.既有最小值0,又有最大值$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)f(x)=msin(πx+α)+ncos(πx+β)+8,其中m,n,α,β均為實(shí)數(shù),若f(2000)=-2000,則f(2015)=2016.

查看答案和解析>>

同步練習(xí)冊答案