已知,R
(Ⅰ)當時,解不等式;
(Ⅱ)若恒成立,求k的取值范圍.
(Ⅰ){x|x>-};(Ⅱ)[12,+∞).
解析試題分析:(Ⅰ)利用分類討論思想將函數(shù)轉化為分段函數(shù),然后逐一求解每個不等式;(Ⅱ)利用絕對值性質定理求解f(x)=|ax-4|-|ax+8|的最大值,然后確定k的取值范圍.
試題解析:(Ⅰ)當a=2時,
f(x)=2(|x-2|-|x+4|)=
當x<-4時,不等式不成立;
當-4≤x≤2時,由-4x-4<2,得-<x≤2;
當x>2時,不等式必成立.
綜上,不等式f(x)<2的解集為{x|x>-}.
(Ⅱ)因為f(x)=|ax-4|-|ax+8|≤|(ax-4)-(ax+8)|=12,
當且僅當ax≤-8時取等號.
所以f(x)的最大值為12.
故k的取值范圍是[12,+∞).
考點:1.絕對值不等式的解法;2.絕對值不等式的性質定理.
科目:高中數(shù)學 來源: 題型:解答題
已知關于x的不等式|ax-2|+|ax-a|≥2(a>0).
(1)當a=1時,求此不等式的解集;
(2)若此不等式的解集為R,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com