已知R
(Ⅰ)當時,解不等式
(Ⅱ)若恒成立,求k的取值范圍.

(Ⅰ){x|x>-};(Ⅱ)[12,+∞).   

解析試題分析:(Ⅰ)利用分類討論思想將函數(shù)轉化為分段函數(shù),然后逐一求解每個不等式;(Ⅱ)利用絕對值性質定理求解f(x)=|ax-4|-|ax+8|的最大值,然后確定k的取值范圍.
試題解析:(Ⅰ)當a=2時,
f(x)=2(|x-2|-|x+4|)=
當x<-4時,不等式不成立;
當-4≤x≤2時,由-4x-4<2,得-<x≤2;
當x>2時,不等式必成立.
綜上,不等式f(x)<2的解集為{x|x>-}.
(Ⅱ)因為f(x)=|ax-4|-|ax+8|≤|(ax-4)-(ax+8)|=12,
當且僅當ax≤-8時取等號.
所以f(x)的最大值為12.
故k的取值范圍是[12,+∞).
考點:1.絕對值不等式的解法;2.絕對值不等式的性質定理.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知關于x的不等式|ax-2|+|axa|≥2(a>0).
(1)當a=1時,求此不等式的解集;
(2)若此不等式的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),且方程有兩個實根為
(1)求函數(shù)的解析式 ; 
(2)設,解關于x的不等式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù).
(Ⅰ)解不等式;
(Ⅱ)若不等式的解集為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知不等式2|x-3|+|x-4|<2a.
(Ⅰ)若a=1,求不等式的解集;
(Ⅱ)若已知不等式的解集不是空集,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


(Ⅰ)解不等式;
(Ⅱ)若對任意實數(shù),恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,,.求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題12分)若不等式對一切恒成立,試確定實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(I)
(II)

查看答案和解析>>

同步練習冊答案