A. | $\frac{1}{48}$ | B. | $\frac{1}{24}$ | C. | $\frac{23}{48}$ | D. | $\frac{11}{24}$ |
分析 由題意可得$\frac{{a}_{n}}{n+1}$-$\frac{{a}_{n-1}}{n}$=2,運(yùn)用等差數(shù)列的定義和通項(xiàng)公式可得an=2n(n+1),$\frac{1}{{a}_{n}}$=$\frac{1}{2n(n+1)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+1}$),再由數(shù)列的求和方法:裂項(xiàng)相消求和,化簡即可得到所求和.
解答 解:a1=4,n(an-an-1-2)=an-1+2n2,
可得nan-(n+1)an-1=2n(n+1),n≥2,
即有$\frac{{a}_{n}}{n+1}$-$\frac{{a}_{n-1}}{n}$=2,
可得數(shù)列{$\frac{{a}_{n}}{n+1}$}是首項(xiàng)為$\frac{{a}_{1}}{2}$=2,公差d=2的等差數(shù)列,
即有$\frac{{a}_{n}}{n+1}$=2+2(n-1)=2n,
則an=2n(n+1),
$\frac{1}{{a}_{n}}$=$\frac{1}{2n(n+1)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+1}$),
則$\frac{1}{{a}_{12}}$+$\frac{1}{{a}_{13}}$+$\frac{1}{{a}_{14}}$+…+$\frac{1}{{a}_{23}}$=$\frac{1}{2}$×($\frac{1}{12}$-$\frac{1}{13}$+$\frac{1}{13}$-$\frac{1}{14}$+$\frac{1}{14}$-$\frac{1}{15}$+…+$\frac{1}{23}$-$\frac{1}{24}$)
=$\frac{1}{2}$×($\frac{1}{12}$-$\frac{1}{24}$)=$\frac{1}{48}$.
故選:A.
點(diǎn)評(píng) 本題考查等差數(shù)列的定義和通項(xiàng)公式的運(yùn)用,考查轉(zhuǎn)化思想和化簡運(yùn)算能力,以及數(shù)列的求和方法:裂項(xiàng)相消求和,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 以上均不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -1 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com