直線l:y=kx+1與雙曲線C:3x2-y2=1相交于不同的A,B兩點(diǎn).
(1)求AB的長度;
(2)是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)?若存在,求出k的值,若不存在,寫出理由.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:綜合題
分析:(1)直接聯(lián)立直線與雙曲線方程,化為關(guān)于x的一元二次方程,利用根與系數(shù)關(guān)系求得兩交點(diǎn)A,B的橫坐標(biāo)的和與積,由弦長公式求得弦長;
(2)把存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)轉(zhuǎn)化為kOA•kOB=-1,即x1x2+y1y2=0,整理后代入根與系數(shù)關(guān)系求解實(shí)數(shù)k的值.
解答: 解:聯(lián)立方程組
y=kx+1
3x2-y2=1
,消去y得(3-k2)x2-2kx-2=0,
∵直線與雙曲線有兩個(gè)交點(diǎn),
3-k2≠0
△=4k2+8(3-k2)>0
,解得k2<6且k2≠3,
x1+x2=
2k
3-k2
x1x2=
-2
3-k2

(1)|AB|=
1+k2
|x1-x2|=
1+k2
(x1+x2)2-4x1x2

=
1+k2
(
2k
3-k2
)2-4•
-2
3-k2

=
2
-k4+5k2+6
|k2-3|
 (k2<6且k2≠3).
(2)假設(shè)存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),
則kOA•kOB=-1,即x1x2+y1y2=0,
∴x1x2+(kx1+1)(kx2+1)=0,
即(k+1)x1x2+k(x1+x2)+1=0,
(k+1)•
-2
3-k2
+k•
2k
3-k2
+1=0
,
整理得k2=1,符合條件,
∴k=±1.
點(diǎn)評(píng):本題主要考查了直線與雙曲線的位置關(guān)系的應(yīng)用,直線與曲線聯(lián)立,根據(jù)方程的根與系數(shù)的關(guān)系解題,是處理這類問題的最為常用的方法,訓(xùn)練了利用直線斜率的關(guān)系判斷兩直線的垂直關(guān)系,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
3
,右準(zhǔn)線方程為x=
3
3
,
(1)求雙曲線C的方程;
(2)已知直線x-y+m=0與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在以雙曲線C的實(shí)軸長為直徑的圓上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=m(m>0)與拋物線y2=ax(a>0)相交于A(1,1),B(1,-1)兩點(diǎn).
(1)求圓O的半徑,拋物線的焦點(diǎn)坐標(biāo)及準(zhǔn)線方程;
(2)設(shè)P是拋物線上不同于A,B的點(diǎn),且在圓外部,PA的延長線交圓于點(diǎn)C,直線PB與x軸交于點(diǎn)D,點(diǎn)E在直線PB上,且四邊形ODEC為等腰梯形,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正數(shù)數(shù)列{an}中,Sn為an的前n項(xiàng)和,若點(diǎn)(an,Sn)在函數(shù)y=
c2-x
c-1
的圖象上,其中c為正常數(shù),且c≠1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=
n2 nan+2
2n+1
,當(dāng)c=2的時(shí)候,是否存在正整數(shù)m、n(1<m<n),使得b1,bm,bn成等比數(shù)列?若存在,求出所有的m、n的值,若不存在,請(qǐng)說明理由;
(3)設(shè)數(shù)列{cn}滿足cn=
n,n=2k-1
2an,n=2k
,k∈N*
,當(dāng)c=
3
3
時(shí)候,在數(shù)列{cn}中,是否存在連續(xù)的三項(xiàng)cr,cr+1,cr+2,按原來的順序成等差數(shù)列?若存在,求出所有滿足條件的正整數(shù)r的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),若當(dāng)x<0時(shí),函數(shù)f(x)單調(diào)遞增,f(-1)=0,設(shè)g(x)=x2-mx-2m-1,集合A={m|對(duì)任意的x∈[1,2],g(x)<0恒成立},集合B={m|對(duì)任意的x∈[1,2],f(g(x))<0恒成立},求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,經(jīng)過村莊A有兩條夾角為60°的公路AB,AC,根據(jù)規(guī)劃擬在兩條公路之間的區(qū)域內(nèi)建一工廠P,分別在兩條公路邊上建兩個(gè)倉庫M、N (異于村莊A),要求PM=PN=MN=2(單位:千米).如何設(shè)計(jì),使得工廠產(chǎn)生的噪聲對(duì)居民的影響最小(即工廠與村莊的距離最遠(yuǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式(m-1)x2+(m-1)x+2>0的解集是R,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知空間四邊形OABC,其對(duì)角線為OB,AC,M,N分別是對(duì)邊OA,BC的中點(diǎn),點(diǎn)G在線段MN上,且
MG
=2
GN
,現(xiàn)用基組{
OA
,
OB
,
OC
}表示向量
OG
,有
OG
=x
OA
+y
OB
+z
OC
,則x,y,z的值分別為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

線段AB是圓C1:x2+y2=10的一條直徑,離心率為
5
的雙曲線C2以A,B為焦點(diǎn).若P是圓C1與雙曲線C2的一個(gè)公共點(diǎn),則|PA|+|PB|的值為( 。
A、2
2
B、2
15
C、4
3
D、6
2

查看答案和解析>>

同步練習(xí)冊(cè)答案