【題目】設(shè)圓C滿足三個(gè)條件①過(guò)原點(diǎn);②圓心在y=x上;③截y軸所得的弦長(zhǎng)為4,求圓C的方程.
【答案】解:根據(jù)題意畫出圖形,如圖所示:
當(dāng)圓心C1在第一象限時(shí),過(guò)C1作C1D垂直于x軸,C1B垂直于y軸,連接AC1 ,
由C1在直線y=x上,得到C1B=C1D,則四邊形OBC1D為正方形,
∵與y軸截取的弦OA=4,∴OB=C1D=OD=C1B=2,即圓心C1(2,2),
在直角三角形ABC1中,根據(jù)勾股定理得:AC1=2,
則圓C1方程為:(x﹣2)2+(y﹣2)2=8;
當(dāng)圓心C2在第三象限時(shí),過(guò)C2作C2D垂直于x軸,C2B垂直于y軸,連接AC2 ,
由C2在直線y=x上,得到C2B=C2D,則四邊形OB′C2D′為正方形,∵與y軸截取的弦OA′=4,∴OB′=C2D′,
=OD′=C2B′=2,即圓心C2(﹣2,﹣2),
在直角三角形A′B′C2中,根據(jù)勾股定理得:A′C2=2,
則圓C1方程為:(x+2)2+(y+2)2=8,
∴圓C的方程為:(x﹣2)2+(y﹣2)2=8或(x+2)2+(y+2)2=8.
【解析】分圓心C在第一象限和第三象限兩種情況,當(dāng)圓心C1在第一象限時(shí),過(guò)C1分別作出與x軸和y軸的垂線,根據(jù)角平分線的性質(zhì)得到四邊形OBCD為正方形,連接C1A,由題意可知圓C與y軸截得的弦長(zhǎng)為4,根據(jù)垂徑定理即可求出正方形的邊長(zhǎng)即可得到圓心C的坐標(biāo),在直角三角形ABC中,利用勾股定理即可求出AC的長(zhǎng)即為圓的半徑,由圓心和半徑寫出圓的方程;當(dāng)圓心C在第三象限時(shí),同理可得圓C的方程.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí),掌握?qǐng)A的標(biāo)準(zhǔn)方程:;圓心為A(a,b),半徑為r的圓的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(1)寫出曲線的參數(shù)方程和直線的普通方程;
(2)已知點(diǎn)是曲線上一點(diǎn),求點(diǎn)到直線的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,幾何體EF﹣ABCD中,CDEF為邊長(zhǎng)為2的正方形,ABCD為直角梯形,AB∥CD,AD⊥DC,AD=2,AB=4,∠ADF=90°.
(1)求證:AC⊥FB
(2)求二面角E﹣FB﹣C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AD=CD=2AB=2,PA⊥AD,AB∥CD,CD⊥AD,E為PC的中點(diǎn),且DE=EC.
(1)求證:PA⊥面ABCD;
(2)設(shè)PA=a,若平面EBD與平面ABCD所成銳二面角θ∈( , ),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形中, 動(dòng)點(diǎn)在以點(diǎn)為圓心且與相切的圓上,若,則的最大值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+6.
(1)當(dāng)a=5時(shí),解不等式f(x)<0;
(2)若不等式f(x)>0的解集為R,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn= an+n﹣3.
(1)求證:數(shù)列{an﹣1}是等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)令cn=log3(a1﹣1)+log3(a2﹣1)+…+log3(an﹣1),對(duì)任意n∈N*, + +…+ <k都成立,求k的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】?jī)蓷l平行直線和圓的位置關(guān)系定義為:若兩條平行直線和圓有四個(gè)不同的公共點(diǎn),則稱兩條平行線和圓“相交”;若兩平行直線和圓沒(méi)有公共點(diǎn),則稱兩條平行線和圓“相離”;若兩平行直線和圓有一個(gè)、兩個(gè)或三個(gè)不同的公共點(diǎn),則稱兩條平行線和圓“相切”.已知直線l1:2x﹣y+a=0,l2:2x﹣y+a2+1=0和圓:x2+y2+2x﹣4=0相切,則a的取值范圍是( )
A.a>7或a<﹣3
B.
C.﹣3≤a≤一 或 ≤a≤7
D.a≥7或a≤﹣3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com