分析 聯(lián)立方程組求出積分的上限和下限,結(jié)合積分的幾何意義即可得到結(jié)論聯(lián)立方程組求出積分的上限和下限,結(jié)合積分的幾何意義即可得到結(jié)論.
解答 解:作出兩條曲線對應(yīng)的封閉區(qū)域如圖:
由$\left\{\begin{array}{l}{y={x}^{2}}\\{y=x+2}\end{array}\right.$得x2=x+2,即x2-x-2=0,
解得x=-1或x=2,
則根據(jù)積分的幾何意義可知所求的幾何面積S=${∫}_{-1}^{2}$(x+2-x2)dx=($\frac{1}{3}$x3+$\frac{1}{2}$x2+2x)|${\;}_{-1}^{2}$=$\frac{9}{2}$,
故答案為:
點(diǎn)評 本題主要考查積分的應(yīng)用,作出對應(yīng)的圖象,求出積分上限和下限,是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | $\frac{1}{2}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{15}{2}$cm | B. | $\frac{15}{4}$cm | C. | $\frac{5\sqrt{41}}{2}$cm | D. | $\frac{5\sqrt{41}}{4}$cm |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{6}}}{2}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\frac{{4\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com