【題目】已知數(shù)列{an}中,a1=1,{bn}滿足bn=2nan,b3=10,且{bn}是等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng);
(2)求數(shù)列{an}的前n項(xiàng)和為Sn.
【答案】(1)an(2n﹣1)()n﹣1;(2)
【解析】
(1)根據(jù)數(shù)列為等差數(shù)列,求出,則可得;
(2)利用錯(cuò)位相減法可求得。
(1)a1=1,{bn}滿足bn=2nan,b3=10,且{bn}是公差為d的等差數(shù)列,
可得b1=2a1=2,2d=b3﹣b1=8,則d=4,可得bn=2+4(n﹣1)=4n﹣2;
則an(2n﹣1)()n﹣1;
(2)前n項(xiàng)和Sn=11+35(2n﹣1)()n﹣1,
Sn=135(2n﹣1)()n,
相減可得Sn=1+2(()n﹣1
化簡(jiǎn)可得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】六人站成一排,求:
(1)甲不在排頭,乙不在排尾的排列數(shù);
(2)甲不在排頭,乙不在排尾,且甲乙不相鄰的排法數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題恒成立;命題方程表示雙曲線.
(1)若命題為真命題,求實(shí)數(shù)的取值范圍;
(2)若命題“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的方程為,點(diǎn),點(diǎn)M為圓上的任意一點(diǎn),線段的垂直平分線與線段相交于點(diǎn)N.
(1)求點(diǎn)N的軌跡C的方程.
(2)已知點(diǎn),過(guò)點(diǎn)A且斜率為k的直線交軌跡C于兩點(diǎn),以為鄰邊作平行四邊形,是否存在常數(shù)k,使得點(diǎn)B在軌跡C上,若存在,求k的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:圓心到直線的距離與圓的半徑之比稱為“直線關(guān)于圓的距離比”.
(1)設(shè)圓求過(guò)點(diǎn)P的直線關(guān)于圓的距離比的直線方程;
(2)若圓與軸相切于點(diǎn)A且直線關(guān)于圓C的距離比求出圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:(a>b>0)的離心率為且經(jīng)過(guò)點(diǎn)P(2,).
(1)求橢圓C的方程;
(2)若橢圓C的左右頂點(diǎn)分別為A,B,過(guò)點(diǎn)A斜率為k(k≠0)的直線l交橢圓C于點(diǎn)D,交y軸于點(diǎn)E.是否存在定點(diǎn)Q,對(duì)于任意的k(k≠0)都有BD⊥EQ,若存在,求△AQD的面積的最大值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校實(shí)行選科走班制度,張毅同學(xué)的選擇是地理、生物、政治這三科,且生物在層班級(jí).該校周一上午選科走班的課程安排如下表所示,張毅選擇三個(gè)科目的課各上一節(jié),另外一節(jié)上自習(xí),則他不同的選課方法的種數(shù)為( )
第一節(jié) | 第二節(jié) | 第三節(jié) | 第四節(jié) |
地理1班 | 化學(xué)層3班 | 地理2班 | 化學(xué)層4班 |
生物層1班 | 化學(xué)層2班 | 生物層2班 | 歷史層1班 |
物理層1班 | 生物層3班 | 物理層2班 | 生物層4班 |
物理層2班 | 生物層1班 | 物理層1班 | 物理層4班 |
政治1班 | 物理A層3班 | 政治2班 | 政治3班 |
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】首項(xiàng)為O的無(wú)窮數(shù)列同時(shí)滿足下面兩個(gè)條件:
①;②
(1)請(qǐng)直接寫出的所有可能值;
(2)記,若對(duì)任意成立,求的通項(xiàng)公式;
(3)對(duì)于給定的正整數(shù),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),試判斷零點(diǎn)的個(gè)數(shù);
(Ⅲ)當(dāng)時(shí),若對(duì),都有()成立,求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com