【題目】定義:圓心到直線的距離與圓的半徑之比稱為“直線關(guān)于圓的距離比”.
(1)設(shè)圓求過點P的直線關(guān)于圓的距離比的直線方程;
(2)若圓與軸相切于點A且直線關(guān)于圓C的距離比求出圓C的方程.
【答案】(1)或;(2)或
【解析】
(1)分析直線斜率不存在時不合題意;設(shè)過點P(﹣1,0)的直線方程為y=k(x+1),由已知圓的方程求得圓心坐標(biāo)與半徑,再由“直線關(guān)于圓的距離比”求解,則直線方程可求;
(2)設(shè)圓的方程為,由題意可得關(guān)于a,b,r的方程,聯(lián)立方程組求解a,b,r的值,則圓的方程可求.
(1)當(dāng)直線的斜率不存在時,則直線方程為x=﹣1,圓心坐標(biāo)為(2,0),半徑為1,
不滿足圓心到直線的距離與圓的半徑之比為,則所求直線的斜率存在.
設(shè)過點的直線方程為,由圓的圓心為,半徑為,
由題意可得,解得,
所以所求直線的方程為或
(2)設(shè)圓的方程為,
由題意可得……①,,……②,……③
由①②③聯(lián)立方程組,可得或,
所以圓C的方程為或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體的棱上(除去棱AD)到直線與的距離相等的點有個,記這個點分別為,則直線與平面所成角的正弦值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某客戶考察了一款熱銷的凈水器,使用壽命為十年,改款凈水器為三級過濾,每一級過濾都由核心部件濾芯來實現(xiàn).在使用過程中,一級濾芯需要不定期更換,其中每更換個一級濾芯就需要更換個二級濾芯,三級濾芯無需更換.其中一級濾芯每個元,二級濾芯每個元.記一臺凈水器在使用期內(nèi)需要更換的二級濾芯的個數(shù)構(gòu)成的集合為.如圖是根據(jù)臺該款凈水器在十年使用期內(nèi)更換的一級濾芯的個數(shù)制成的柱狀圖.
(1)結(jié)合圖,寫出集合;
(2)根據(jù)以上信息,求出一臺凈水器在使用期內(nèi)更換二級濾芯的費用大于元的概率(以臺凈水器更換二級濾芯的頻率代替臺凈水器更換二級濾芯發(fā)生的概率);
(3)若在購買凈水器的同時購買濾芯,則濾芯可享受折優(yōu)惠(使用過程中如需再購買無優(yōu)惠).假設(shè)上述臺凈水器在購機(jī)的同時,每臺均購買個一級濾芯、個二級濾芯作為備用濾芯(其中,),計算這臺凈水器在使用期內(nèi)購買濾芯所需總費用的平均數(shù).并以此作為決策依據(jù),如果客戶購買凈水器的同時購買備用濾芯的總數(shù)也為個,則其中一級濾芯和二級濾芯的個數(shù)應(yīng)分別是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓及直線:.
(1)證明:不論取什么實數(shù),直線與圓C總相交;
(2)求直線被圓C截得的弦長的最小值及此時的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,{bn}滿足bn=2nan,b3=10,且{bn}是等差數(shù)列.
(1)求數(shù)列{an}的通項;
(2)求數(shù)列{an}的前n項和為Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),.有下列命題:
①對,恒有成立.
②,使得成立.
③“若,則有且.”的否命題.
④“若且,則有.”的逆否命題.
其中,真命題有_____________.(只需填序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)求曲線在點處的切線方程;
(Ⅱ)當(dāng)時,求證:函數(shù)存在極小值;
(Ⅲ)請直接寫出函數(shù)的零點個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com