7.已知函數(shù)f(x)=cosx+xsinx-a,x∈(-π,π),若f(x)有4個(gè)零點(diǎn),則a的取值范圍為(  )
A.(-1,1)B.(1,$\frac{π}{2}$)C.(0,$\frac{π}{2}$)D.(-1,$\frac{π}{2}$)

分析 令g(x)=cosx+xsinx,x∈(-π,π),分析直線y=a與g(x)=cosx+xsinx的圖象有四個(gè)交點(diǎn)a的取值范圍,可得答案.

解答 解:令g(x)=cosx+xsinx,x∈(-π,π),
則g′(x)=xcosx,x∈(-π,π),
令g′(x)<0,則x∈(-$\frac{π}{2}$,0)∪($\frac{π}{2}$,π),令g′(x)>0,則x∈(-π,-$\frac{π}{2}$)∪(0,$\frac{π}{2}$),
故g(x)在(-π,-$\frac{π}{2}$)上為增函數(shù),在(-$\frac{π}{2}$,0)上為減函數(shù),在(0,$\frac{π}{2}$)上為增函數(shù),在($\frac{π}{2}$,π)上為減函數(shù),
故g(x)在x=-$\frac{π}{2}$和x=$\frac{π}{2}$取極大值$\frac{π}{2}$,在x=0時(shí)取極小值1,
又由g(-π)=g(π)=-1,
故當(dāng)a∈(1,$\frac{π}{2}$)時(shí),直線y=a與g(x)=cosx+xsinx的圖象有四個(gè)交點(diǎn),
即函數(shù)f(x)=cosx+xsinx-a,x∈(-π,π)有4個(gè)零點(diǎn),
故選:B.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是利用導(dǎo)數(shù)研究函數(shù)的極值,函數(shù)的零點(diǎn),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知拋物線C:x2=2py(p>0),圓E:x2+(y+1)2=1,若直線L與拋物線C和圓E分別相切于點(diǎn)A,B(A,B不重合)
(Ⅰ)當(dāng)p=1時(shí),求直線L的方程;
(Ⅱ)點(diǎn)F是拋物線C的焦點(diǎn),若對(duì)于任意的p>0,記△ABF面積為S,求$\frac{S}{{\sqrt{p+1}}}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若函數(shù)f(x)=x3-(4+log2a)x+2在(0,2]上有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.$(\frac{1}{4},\left.1]\right.$B.($\frac{1}{2}$,2]C.[1,4)D.[2,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)+2=$\frac{2}{f(\sqrt{x+1})}$,當(dāng)x∈(0,1]時(shí),f(x)=x2,若在區(qū)間(-1,1]內(nèi),g(x)=f(x)-t(x+2)有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)t的取值范圍是(  )
A.(0,$\frac{1}{3}$]B.(0,$\frac{1}{2}$]C.[-$\frac{1}{3}$,$\frac{1}{3}$]D.[-$\frac{1}{2}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.實(shí)數(shù)a,b滿足$\frac{1}{1-{2}^{a}}$+$\frac{1}{1-{2}^{b+1}}$=1,則a+b=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)f(x)=cos(x-$\frac{π}{2}$)-log5x的零點(diǎn)個(gè)數(shù)是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知等比數(shù)列{an}的前n項(xiàng)和是Sn,若S30=13S10,S10+S30=140,則S25的值為45$\sqrt{3}$-5或-45$\sqrt{3}$-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.通訊衛(wèi)星C在赤道上空3R(R為地球半徑)的軌道上,它每24小時(shí)繞地球一周,所以它定位于赤道上某一點(diǎn)的上空.如果此點(diǎn)與某地A(北緯60°)在同一條子午在線,則在A觀察此衛(wèi)星的仰角的正切值為$\frac{3}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知a為正整數(shù),f(x)=ax2+4ax-2x+4a-7,若y=f(x)至少有一個(gè)零點(diǎn)x0且x0為整數(shù),則a的取值為1或5.

查看答案和解析>>

同步練習(xí)冊(cè)答案