12.函數(shù)f(x)=cos(x-$\frac{π}{2}$)-log5x的零點(diǎn)個(gè)數(shù)是1.

分析 f(x)=cos(x-$\frac{π}{2}$)-log5x=sinx-log5x,利用零點(diǎn)存在定理,即可得出結(jié)論.

解答 解:f(x)=cos(x-$\frac{π}{2}$)-log5x=sinx-log5x
∵f($\frac{π}{2}$)=1-log5$\frac{π}{2}$>0,f(π)=0-log5π<0,
∴函數(shù)f(x)=cos(x-$\frac{π}{2}$)-log5x的零點(diǎn)在區(qū)間($\frac{π}{2}$,π),
故答案為:1.

點(diǎn)評(píng) 本題考查函數(shù)零點(diǎn)存在定理,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在三棱錐P-ABC中,已知PA⊥底面ABC,AB⊥BC,E,F(xiàn)分別是線段PB,PC上的動(dòng)點(diǎn).則下列說法錯(cuò)誤的是( 。
A.當(dāng)AE⊥PB時(shí),△AEF-定為直角三角形
B.當(dāng)AF⊥PC時(shí),△AEF-定為直角三角形
C.當(dāng)EF∥平面ABC時(shí),△AEF-定為直角三角形
D.當(dāng)PC⊥平面AEF時(shí),△AEF-定為直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.對(duì)任意實(shí)數(shù)m,n定義運(yùn)算⊕:m⊕n=$\left\{\begin{array}{l}n,m-n≥1\\ m,m-n<1\end{array}$,已知函數(shù)f(x)=(x2-1)⊕(4+x),若函數(shù)F(x)=f(x)-b恰有三個(gè)零點(diǎn),則實(shí)數(shù)b的取值范圍為-1<b≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在菱形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,AB=5,AC=8(如圖).如果點(diǎn)E在對(duì)角線AC上,且DE=4.
(1)求AE的長;
(2)設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{DE}$=$\overrightarrow{c}$,試用向量$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$表示下列向量:$\overrightarrow{BC}$,$\overrightarrow{AE}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=cosx+xsinx-a,x∈(-π,π),若f(x)有4個(gè)零點(diǎn),則a的取值范圍為( 。
A.(-1,1)B.(1,$\frac{π}{2}$)C.(0,$\frac{π}{2}$)D.(-1,$\frac{π}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=9x
(1)求函數(shù)f-1(3x+6);
(2)解方程:f(x)=f(f-1(3x+6)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若不等式$\frac{2x+a}{x+b}$≤1的解集為{x|2<x≤3},則a+b的值是-7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知平面四邊形ABCD中,DA=AB=BC,AB⊥AD,∠ABC=135°,現(xiàn)沿對(duì)角線BD將△ABD折起,使平面ABD⊥平面CBD
(Ⅰ)求證:AD⊥平面ABC;
(II)在線段AC上是否存在一個(gè)點(diǎn)P,使得直線DP和平面ABC所成角為60°?若存在,確定點(diǎn)P的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的焦距為2$\sqrt{3}$,離心率為$\frac{\sqrt{3}}{2}$.
(1)求橢圓C的方程;
(2)若M,N,P是橢圓C上不同的三點(diǎn),且滿足$\overrightarrow{OM}+λ\overrightarrow{ON}=\overrightarrow{OP}$(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案