18.在各項均為正數(shù)的等比數(shù)列{an}中.若a3a5=4,則a1a2a3a4a5a6a7=128.

分析 由題意和等比數(shù)列的性質(zhì)可得a4,再由等比數(shù)列的性質(zhì)可得要求的式子為(a47,代值計算可得.

解答 解:∵在各項均為正數(shù)的等比數(shù)列{an}中a3a5=4,
∴a4=$\sqrt{{a}_{3}{a}_{5}}$=2,故a1a2a3a4a5a6a7=(a47=128,
故答案為:128.

點評 本題考查等比數(shù)列的通項公式和性質(zhì),劃歸為a4是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.二項式${({2\sqrt{x}-\frac{1}{x}})^6}$的展開式中所有有理項的系數(shù)和等于365(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.在(x2+$\frac{k}{x}$)6(k為實常數(shù))的展開式中,x3項的系數(shù)等于160,則k=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在△ABC中,三角形的兩邊分別是2和4,它們夾角的余弦是方程x2-x+$\frac{1}{4}$=0的根,則三角形的另一邊長為2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列變換能得到y(tǒng)=cos(x+$\frac{π}{2}$)的圖象的有( 。
①將y=cosx的圖象向右平移$\frac{π}{2}$個單位
②將y=cosx的圖象向左平移$\frac{π}{2}$個單位
③將y=sinx的圖象向右平移π個單位
④將y=sinx的圖象向左平移π個單位.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知{an}、{bn}是項數(shù)相同的等比數(shù)列,求證:{anbn}、{can}(c為非零常數(shù))是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知z=($\frac{1-i}{\sqrt{2}}$)2016(i是虛數(shù)單位),則z等于1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.曲線y=x2與y=$\sqrt{x}$圍成的圖形繞x軸旋轉(zhuǎn)一周所得到的旋轉(zhuǎn)體的體積是$\frac{3π}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的焦點為F1,F(xiàn)2,點P在橢圓上,且滿足|PO|2=|PF1|•|PF2|( O為坐標原點),則稱點P為“●”點,則此橢圓上的“●”點有( 。
A.8個B.4個C.2個D.0個

查看答案和解析>>

同步練習冊答案