16.曲線y=x2與y=$\sqrt{x}$圍成的圖形繞x軸旋轉(zhuǎn)一周所得到的旋轉(zhuǎn)體的體積是$\frac{3π}{10}$.

分析 欲求曲線y=x2和y2=x所圍成的平面圖形繞x軸旋轉(zhuǎn)一周后所形成的旋轉(zhuǎn)體的體積,可利用定積分計算,即求出被積函數(shù)y=π(x-x4)在0→1上的積分即可.

解答 解:設(shè)旋轉(zhuǎn)體的體積為V,
則,V=${π∫}_{0}^{1}(x-{x}^{4})dx=π(\frac{1}{2}x-\frac{1}{5}{x}^{5}){丨}_{0}^{1}$=$\frac{3π}{10}$
故旋轉(zhuǎn)體的體積為:$\frac{3π}{10}$.

點評 本小題主要考查定積分、定積分的應(yīng)用等基礎(chǔ)知識,考查數(shù)形結(jié)合思想.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知正項等差數(shù)列{an}中,a1+a2+a3=15,若a1+2,a2+5,a3+13成等比數(shù)列,則a10=21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在各項均為正數(shù)的等比數(shù)列{an}中.若a3a5=4,則a1a2a3a4a5a6a7=128.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,直三棱柱ABC-A1B1C1中,D是AB的中點.
(1)證明:BC1∥平面A1CD;
(2)設(shè)AA1=AC=CB=2,AB=2$\sqrt{2}$,求異面直線BC1與A1D所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=2x3-3x2,
(1)求函數(shù)f(x)的極大值和極小值,
(2)求x=2時函數(shù)f(x)=2x3-3x2的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.三棱錐P-ABC的四個頂點都在半徑為5的球面上,底面ABC所在的小圓面積為9π,則該三棱錐的高的最大值為( 。
A.7B.8C.8.5D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.過M(1,3)引圓x2+y2=2的切線,切點分別為A、B,則△AMB的面積為(  )
A.$\frac{32}{5}$B.4C.$\frac{16}{5}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知圓的方程為x2+y2-8x+15=0,若直線y=kx+2上至少存在一點,使得以該點為圓心,半徑為1的圓與圓C有公共點,則k的最小值是( 。
A.$-\frac{4}{3}$B.$-\frac{5}{3}$C.$-\frac{3}{5}$D.$-\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某學(xué)校有120名教師,且年齡都在20歲到60歲之間,各年齡段人數(shù)按分組,其頻率分布直方圖如圖所示,學(xué)校要求每名教師都要參加兩項培訓(xùn),培訓(xùn)結(jié)束后進行結(jié)業(yè)考試.已知各年齡段兩項培訓(xùn)結(jié)業(yè)考試成績優(yōu)秀的人數(shù)如表示,假設(shè)兩項培訓(xùn)是相互獨立的,結(jié)業(yè)考試成績也互不影響.
年齡分組A項培訓(xùn)成績優(yōu)秀人數(shù)B項培訓(xùn)成績優(yōu)秀人數(shù)
[20,30)3018
[30,40)3624
[40,50)129
[50,60]43
(1)若用分層抽樣法從全校教師中抽取一個容量為40的樣本,求從年齡段[20,30)抽取的人數(shù);
(2)求全校教師的平均年齡;
(3)隨機從年齡段[20,30)和[30,40)內(nèi)各抽取1人,設(shè)這兩人中兩項培訓(xùn)結(jié)業(yè)考試成績都優(yōu)秀的人數(shù)為X,求X的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案