解答:
解:f(x)=mx
2-m
2x-mx+m
2.
(1)由f(x)=mx
2-m
2x-mx+m
2=mx
2-(m
2+m)x+m
2,
當(dāng)m=0時(shí),f(x)=0恒成立,滿足對(duì)于x∈[0,1],f(x)≥0恒成立;
當(dāng)m>0時(shí),要使對(duì)于x∈[0,1],f(x)≥0恒成立,則
(Ⅰ)或
(Ⅱ)或
(Ⅲ).
解(Ⅰ)得:m∈∅;解(Ⅱ)得:m≥1;解(Ⅲ)得:m∈∅.
∴實(shí)數(shù)m的取值范圍是[1,+∞);
當(dāng)m<0時(shí),要使對(duì)于x∈[0,1],f(x)≥0恒成立,則
,∴m<0.
綜上,對(duì)于x∈[0,1],f(x)≥0恒成立的實(shí)數(shù)m的取值范圍是(-∞,0]∪[1,+∞);
(2)由f(m)=mx
2-m
2x-mx+m
2=(1-x)m
2+(x
2-x)m,
當(dāng)x=1時(shí),f(m)=0恒成立,滿足對(duì)于m∈[0,1],f(m)≥0恒成立;
當(dāng)x<1時(shí),要使對(duì)于m∈[0,1],f(m)≥0恒成立,則
(Ⅰ)或
(Ⅱ)或
(Ⅲ)
解(Ⅰ)得:x≤0;解(Ⅱ)得:x∈∅;解(Ⅲ)得:x∈∅;
∴實(shí)數(shù)x的取值范圍是(-∞,0];
當(dāng)x>1時(shí),要使對(duì)于m∈[0,1],f(m)≥0恒成立,則
,∴x>1.
綜上,對(duì)于m∈[0,1],f(x)≥0恒成立的實(shí)數(shù)x的取值范圍是(-∞,0]∪[1,+∞).