9.某種樹的分枝生長(zhǎng)規(guī)律如圖所示(如前4年分枝數(shù)分別為1,1,2,3),則預(yù)計(jì)第7年樹的分枝數(shù)為(  )
A.8B.12C.13D.16

分析 由圖形求出這種樹的從第一年的分枝數(shù),可發(fā)現(xiàn)從第三項(xiàng)起每一項(xiàng)都等于前兩項(xiàng)的和,由此規(guī)律即可求出第7年樹的分枝數(shù).

解答 解:由題意得,這種樹的從第一年的分枝數(shù)分別是1,1,2,3,5,…,
則2=1+1,3=1+2,5=2+3,即從第三項(xiàng)起每一項(xiàng)都等于前兩項(xiàng)的和,
所以第6年樹的分枝數(shù)是3+5=8,
第7年樹的分枝數(shù)是5+8=13,
故選:C

點(diǎn)評(píng) 本題考查了歸納推理,難點(diǎn)在于發(fā)現(xiàn)其中的規(guī)律,考查觀察、分析、歸納能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=1.
(1)求異面直線A1B1與BD所成角的大。
(2)∠B1AB=60°,求三棱錐B1-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知a是實(shí)數(shù),函數(shù)f(x)=x2(x-a),若f′(1)=3,則曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為3x-y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.通過(guò)伸縮變換,下列曲線形態(tài)可能發(fā)生是( 。
(1)直線(2)圓(3)橢圓(4)雙曲線(5)拋物線.
A.(2)(3)B.(1)(4)(5)C.(1)(2)(3)D.(2)(3)(4)(5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某校從高二年級(jí)學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段:[40,50),[50,60),[90,100]后得到如圖的頻率分布直方圖.
(1)求圖中實(shí)數(shù)a的值;
(2)若該校高二年級(jí)共有學(xué)生640人,試估計(jì)該校高二年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù);
(3)若從數(shù)學(xué)成績(jī)?cè)赱40,50)與[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取兩名學(xué)生,求這兩名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知f(x)=ax2+bx+c,a,b,c∈R,定義域?yàn)閇-1,1],
(Ⅰ)當(dāng)a=1,|f(x)|≤1時(shí),求證:|1+c|≤1;
(Ⅱ)當(dāng)b>2a>0時(shí),是否存在x∈[-1,1],使得|f(x)|≥b?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)函數(shù)f(x)=$\frac{x}{2x+2}$(x>0),觀察:
f1(x)=f(x)=$\frac{x}{2x+2}$,
f2(x)=f(f1(x))=$\frac{x}{6x+4}$;
f3(x)=f(f2(x))=$\frac{x}{14x+8}$.
f4(x)=f(f3(x))=$\frac{x}{30x+16}$

根據(jù)以上事實(shí),當(dāng)n∈N*時(shí),由歸納推理可得:fn(1)=$\frac{1}{{3•2}^{n}-2}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖所示,圓柱的高為2,底面半徑為$\sqrt{7}$,AE,DF是圓柱的兩條母線,過(guò)AD做圓柱的截面交下底面于BC,四邊形ABCD是正方形.
(I)求證:BC⊥BE;
(Ⅱ)求四棱錐E-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.下列四個(gè)數(shù)中,正數(shù)的個(gè)數(shù)是①④.
①$\frac{b+m}{a+m}$-$\frac{a}$,a>b>0,m>0;
②($\sqrt{n+3}$+$\sqrt{n}$)-($\sqrt{n+2}$+$\sqrt{n+1}$),n∈N*;
③2(a2+b2)-(a+b)2,a,b∈R;
④$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$-2,x∈R.

查看答案和解析>>

同步練習(xí)冊(cè)答案