分析 (Ⅰ)當a=1時,f(x)=x2+bx+c,結(jié)合|f(x)|≤1及絕對值三角不等式可證得:|1+c|≤1;
(Ⅱ)當b>2a>0時,$-\frac{2a}<-1$,則f(x)在[-1,1]上遞增且b>0,分類討論滿足|f(x)|≥b的x值,綜合討論結(jié)果可得答案.
解答 證明:(Ⅰ)當a=1時,f(x)=x2+bx+c,
∵|f(x)|≤1
∴|f(-1)|=|1-b+c|≤1,|f(1)|=|1+b+c|≤1,
∵|1-b+c+1+b+c|≤|1-b+c|+|1+b+c|≤2,
∴|2+2c|≤2
∴|1+c|≤1…(6分)
解:(Ⅱ)∵b>2a>0,
∴$-\frac{2a}<-1$,則f(x)在[-1,1]上遞增且b>0
∴f(x)∈[a-b+c,a+b+c]…(9分)
①當a+c>0時,a+b+c>b>0…(11分)
此時有|f(1)|≥b即存在x=1,使得|f(x)|≥b成立
②當a+c<0時,a-b+c<-b<0…(13分)
此時有|f(-1)|≥b即存在x=-1使得|f(x)|≥b成立
③當a+c=0時,f(x)∈[-b,b],存在x使得|f(x)|≥b成立
∴存在x=±1使得|f(x)|≥b成立…(15分)
點評 本題考查的知識點是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | π | B. | 2π | C. | 3π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 12 | C. | 13 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)學(xué)成績分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) | [100,110) | [110,120] |
頻數(shù) | 1 | 2 | 3 | 7 | 6 | 5 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16($π-\sqrt{3}$) | B. | 16($π-\sqrt{2}$) | C. | 8(2$π-3\sqrt{2}$) | D. | 8(2$π-\sqrt{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{8}$ | D. | $\frac{5}{8}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com