18.在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,若$\frac{2c-b}{a}=\frac{cosB}{cosA}$.
(1)求角A的大;
(2)已知$a=2\sqrt{5}$,求△ABC面積的最大值.

分析 (1)把條件中所給的既有角又有邊的等式利用正弦定理變化成只有角的形式,整理逆用兩角和的正弦公式,根據(jù)三角形內(nèi)角的關(guān)系,得到結(jié)果.
(2)利用余弦定理寫(xiě)成關(guān)于角A的表示式,整理出兩個(gè)邊的積的范圍,表示出三角形的面積,得到面積的最大值.

解答 解:(1)因?yàn)?\frac{2c-b}{a}=\frac{cosB}{cosA}$,所以(2c-b)cosA=acosB由正弦定理,
得(2sinC-sinB)cosA=sinAsinB,整理得2sinCcosA-sinBcosA=sinAcosB
所以2sinC-cosA=sin(A+B)=sinC
在△ABC中,sinC≠0,所以$cosA=\frac{1}{2},∠A=\frac{π}{3}$
(2)由余弦定理cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,a=2$\sqrt{5}$.
∴b2+c2-20=bc≥2bc-20
∴bc≤20,當(dāng)且僅當(dāng)b=c時(shí)取“=”.
∴三角形的面積S=$\frac{1}{2}$bcsinA≤5$\sqrt{3}$.
∴三角形面積的最大值為5$\sqrt{3}$

點(diǎn)評(píng) 本題考查正弦定理和余弦定理,本題解題的關(guān)鍵是角和邊的靈活互化,兩個(gè)定理的靈活應(yīng)用和兩角和的公式的正用和逆用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.曲線C的方程為 $\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0),曲線經(jīng)過(guò)點(diǎn)$(\frac{3}{2},1)$,曲線的離心率為$\frac{1}{2}$.
(I)求曲線C的方程;
(Ⅱ)點(diǎn)P是直線y=4上任意一點(diǎn)但不在y軸上,A1,A2是橢圓的上下兩個(gè)頂點(diǎn),直線PA1,PA2交橢圓分別為C和D,那么直線CD是否經(jīng)過(guò)定點(diǎn)?如果經(jīng)過(guò)定點(diǎn),請(qǐng)求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如果a>1,那么a+$\frac{{a}^{2}}{a-1}$的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.A={α|2k•180°+30°<α<2k•180°+180°,k∈Z},B={β|k•180°-45°<β<k•180°+45°,k∈Z},
則A∩B={x|2k•180°+30°<α<2k•180°+45°或2k•180°+135°<α<2k•180°+180°,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知f(x)=2cos($\frac{π}{3}$x+φ)的一個(gè)對(duì)稱中心為(2,0),φ∈(0,π),則φ=$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知三次函數(shù)f(x)滿足f(x)=-f(a-x)其中a為實(shí)數(shù),f(x)的導(dǎo)函數(shù)為y=f'(x),以下5種說(shuō)法
①函數(shù)y=f(x)是中心對(duì)稱圖形;
②對(duì)于任意的非零實(shí)數(shù)m,n,p,關(guān)于x的方程m[f′(x)]2+nf′(x)+p=0的解集都不可能是{1,4,16,64}
③對(duì)于任意的非零實(shí)數(shù)m,n,p,關(guān)于x的方程m[f′(x)]2+nf′(x)+p=0的解集有可能是{1,4}
④對(duì)于任意的非零實(shí)數(shù)m,n,p,關(guān)于x的方程m|f(x)|2+n|f(x)|+p=0的解集都不可能是{1,2,3,5}
⑤對(duì)于任意的非零實(shí)數(shù)m,n,p,關(guān)于x的方程m|f(x)|2+n|f(x)|+p=0的解集有可能是{1,2,4,8,16,32}
正確的是①②③④.(寫(xiě)出所有正確的代號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若圓錐的側(cè)面面積與過(guò)軸的截面面積之比為2π,則其半徑與母線的比為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.一個(gè)體積為8cm3的幾何體的三視圖如圖所示(單位:cm),其中正視圖和俯視圖是一個(gè)等腰直角三角形和一個(gè)正方形,側(cè)視圖是一個(gè)正方形,則這個(gè)幾何體的表面積是(  )
A.$8+8\sqrt{2}\;c{m^2}$B.$12+8\sqrt{2}\;c{m^2}$C.$16+8\sqrt{2}\;c{m^2}$D.$20+8\sqrt{2}\;c{m^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.采用系統(tǒng)抽樣方法,從我校初中全體900名學(xué)生中抽50名做健康檢查.現(xiàn)將900名學(xué)生從1到900進(jìn)行編號(hào),在1~18中隨機(jī)抽取一個(gè)數(shù),如果抽到的是7,則從37~54這18個(gè)數(shù)中應(yīng)取的數(shù)是( 。
A.44B.43C.42D.41

查看答案和解析>>

同步練習(xí)冊(cè)答案