4.計算:
(1)${27^{\frac{2}{3}}}-{2^{{{log}_2}3}}×{log_2}\frac{1}{8}$;
(2)$\frac{1}{{\sqrt{5}-2}}-{(\sqrt{5}+2)^0}-\sqrt{{{({2-\sqrt{5}})}^2}}$.

分析 (1)根據(jù)對數(shù)運算性質(zhì)計算即可;
(2)利用分母有理化、零指數(shù)冪以及二次根式的化簡進(jìn)行解答.

解答 解:(1)原式=9-3×(-3)=18;
(2)原式=$\sqrt{5}+2-1-(\sqrt{5}-2)=3$.

點評 本題考查了對數(shù)的運算性質(zhì),根式與分?jǐn)?shù)指數(shù)冪的互化及其化簡運算,屬于基礎(chǔ)題,考查學(xué)生的計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知 a∈R,函數(shù) f(x)=a-$\frac{1}{{{2^x}+1}}$.
(1)證明:f(x)在(-∞,+∞)上單調(diào)遞增;
(2)若f(x)為奇函數(shù),求:
①a的值;
②f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}+x+\frac{7}{4},x∈[0,\frac{1}{2}]\\{x^3}+ln(\sqrt{3}e-x),x∈(\frac{1}{2},\frac{7}{4})\\-x+2,x∈[\frac{7}{4},2]\end{array}$,若${x_1}∈[0.\frac{1}{2}]$,x2=f(x1),x1=f(x2),則x1=(  )
A.$\frac{{2-\sqrt{3}}}{2}$B.$\frac{{2-\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}-1}}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,在三棱錐A-BCD中,DA,DB,DC兩兩垂直,且DB=DC,E為BC中點,則$\overrightarrow{AE}•\overrightarrow{BC}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知tanθ=2,則$sin(\frac{π}{2}+2θ)$的值為$-\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)$y=\sqrt{(x-1)(x-2)}+\sqrt{x-1}$的定義域為{x︳x=1或x≥2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列{an}是等差數(shù)列,a1=1,a3=5,則公差d等于( 。
A.-2B.-1C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)全集U={2,4,-(a-3)2},集合A={2,a2-a+2},若∁UA={-1},求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的半焦距為c,直線l過(c,0),(0,b)兩點,若直線l與雙曲線的一條漸近線垂直,則雙曲線的離心率為( 。
A.$\frac{{\sqrt{5}-1}}{2}$B.$\frac{{\sqrt{5}+1}}{2}$C.$\sqrt{5}+1$D.$\sqrt{5}-1$

查看答案和解析>>

同步練習(xí)冊答案