【題目】設,若函數(shù)有4個不同的零點,且,則的取值范圍是( )
A.B.C.D.
【答案】A
【解析】
先求出函數(shù)的解析式,根據(jù)題意,由零點,可以得方程,然后常變量分離,構(gòu)造函數(shù),利用新構(gòu)造函數(shù)的對稱性,得到之間的關(guān)系,再根據(jù)對數(shù)的運算性質(zhì),得到之間的關(guān)系,這樣可以把化簡成關(guān)于的代數(shù)式,最后利用換元法,基本不等式以及函數(shù)的單調(diào)性求出值域即可.
當時,所以有,因此有,所以函數(shù)的解析式為:,由題意可知:有四個不同的實數(shù)解,因此有:,設函數(shù),因此由可知:函數(shù)的圖象與函數(shù)的圖象有四個不同的交點,函數(shù)的圖象如下圖所示:
要想函數(shù)的圖象與函數(shù)的圖象有四個不同的交點,必須有,此時有,再由,結(jié)合圖象可知:函數(shù)是關(guān)于直線對稱,因此有
,所以,令,令,顯然函數(shù)在上單調(diào)遞減,
在上單調(diào)遞增,
故,.
故選:A
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱柱ABCD-中,地面ABCD為直角梯形,AB∥CD,AB⊥BC,平面ABCD⊥平面AB,∠BA=60°,AB=A=2BC=2CD=2
(1)求證:BC⊥A;
(2)求二面角D-A-B的余弦值;
(3)在線段D上是否存在點M,使得CM∥平面DA?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國古代數(shù)學名著《九章算術(shù)》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬、“馬主曰:“我馬食半牛,”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟、羊主人說:“我羊所吃的禾苗只有馬的一半,”馬主人說:“我馬所吃的禾苗只有牛的一半,“打算按此比例償還,他們各應償還多少?該問題中,1斗為10升,則馬主人應償還( )升粟?
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左、右頂點分別為C、D,且過點,P是橢圓上異于C、D的任意一點,直線PC,PD的斜率之積為.
(1)求橢圓的方程;
(2)O為坐標原點,設直線CP交定直線x = m于點M,當m為何值時,為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(,為自然對數(shù)的底數(shù),).
(1)討論函數(shù)的單調(diào)性;
(2)當時,求使得恒成立的最小整數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定點,圓,點為圓上動點,線段的垂直平分線交于點,記的軌跡為曲線.
(1)求曲線的方程;
(2)過點與作平行直線和,分別交曲線于點、和點、,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國大學先修課程,是在高中開設的具有大學水平的課程,旨在讓學有余力的高中生早接受大學思維方式、學習方法的訓練,為大學學習乃至未來的職業(yè)生涯做好準備.某高中開設大學先修課程已有兩年,兩年共招收學生2000人,其中有300人參與學習先修課程,兩年全校共有優(yōu)等生200人,學習先修課程的優(yōu)等生有60人.這兩年學習先修課程的學生都參加了考試,并且都參加了某高校的自主招生考試(滿分100分),結(jié)果如下表所示:
分數(shù) | |||||
人數(shù) | 20 | 55 | 105 | 70 | 50 |
參加自主招生獲得通過的概率 | 0.9 | 0.8 | 0.6 | 0.5 | 0.4 |
(1)填寫列聯(lián)表,并畫出列聯(lián)表的等高條形圖,并通過圖形判斷學習先修課程與優(yōu)等生是否有關(guān)系,根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.01的前提下認為學習先修課程與優(yōu)等生有關(guān)系?
優(yōu)等生 | 非優(yōu)等生 | 總計 | |
學習大學先修課程 | |||
沒有學習大學先修課程 | |||
總計 |
(2)已知今年有150名學生報名學習大學先修課程,以前兩年參加大學先修課程學習成績的頻率作為今年參加大學先修課程學習成績的概率.
①在今年參與大學先修課程的學生中任取一人,求他獲得某高校自主招生通過的概率;
②設今年全校參加大學先修課程的學生獲得某高校自主招生通過的人數(shù)為,求.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下表給出的是某城市年至年,人均存款(萬元),人均消費(萬元)的幾組對照數(shù)據(jù).
年份 | ||||
人均存款(萬元) | ||||
人均消費(萬元) |
(1)試建立關(guān)于的線性回歸方程;如果該城市年的人均存款為萬元,請根據(jù)線性回歸方程預測年該城市的人均消費;
(2)計算,并說明線性回歸方程的擬合效果.
附:回歸方程中斜率和截距的最小二乘估計公式分別為,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com