已知二次函數(shù)f(x)=ax2+bx+c的導數(shù)為f′(x),f′(0)>0,對于任意實數(shù)x都有f(x)≥0,則的最小值為(  )
A.3     B.     C.2     D.
C

先根據(jù)題目的條件建立關于a、b、c的關系式,再結合基本不等式求出最小即可,注意等號成立的條件.
解:∵f(x)=ax2+bx+c
∴f′(x)=2ax+b,f′(0)=b>0
∵對任意實數(shù)x都有f(x)≥0
∴a>0,c>0,b2-4ac≤0即4ac/b2≥ 1

故答案為2
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當x>0時,函數(shù)在(0,)上單調(diào)遞減,在(上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)已知函數(shù)(常數(shù).
(Ⅰ) 當時,求曲線在點處的切線方程;
(Ⅱ)討論函數(shù)在區(qū)間上零點的個數(shù)(為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù).
(1)求的極值;
(2)若上恒成立,求的取值范圍;
(3)已知,且,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2+ln x-1.
(1)求函數(shù)f(x)在區(qū)間[1,e](e為自然對數(shù)的底)上的最大值和最小值;
(2)求證:在區(qū)間(1,+∞)上,函數(shù)f(x)的圖象在函數(shù)g(x)=x3的圖象的下方
(3)(理)求證:[f′(x)]n-f′(xn)≥2n-2(n∈N*)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)..
(I)當時,求曲線處的切線方程();
(II)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

((本小題12分)某造船公司年造船量是20艘,已知造船艘的產(chǎn)值函數(shù)為
(單位:萬元),成本函數(shù)為(單位:萬元),又在經(jīng)濟學中,函數(shù)的邊際函數(shù)定義為。
(Ⅰ)求利潤函數(shù)及邊際利潤函數(shù);(提示:利潤=產(chǎn)值-成本)
(Ⅱ)問年造船量安排多少艘時,可使公司造船的年利潤最大?
(Ⅲ)求邊際利潤函數(shù)單調(diào)遞減時的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖所示,水波的半徑以2m/s的速度向外擴張,當半徑為:    這水波面的圓面積的膨脹率是:    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

不等式恒成立,則的最小值為             .

查看答案和解析>>

同步練習冊答案