13.在明朝程大位《算法統(tǒng)宗》中有這樣的一首歌謠:“遠(yuǎn)看巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈”. 這首古詩描述的這個(gè)寶塔古稱浮屠,本題說它一共有7層,每層懸掛的紅燈數(shù)是上一層的2倍,共有381盞燈,問塔頂有幾盞燈?你算出頂層有( 。┍K燈.
A.2B.3C.5D.6

分析 由題意知第七層至第一層的燈的盞數(shù)構(gòu)成一個(gè)以a為首項(xiàng),以2為公比的等比數(shù)列,由等比數(shù)列的求和公式可得a的方程,解方程可得.

解答 解:設(shè)第七層有a盞燈,由題意知第七層至第一層的燈的盞數(shù)
構(gòu)成一個(gè)以a為首項(xiàng),以2為公比的等比數(shù)列,
∴由等比數(shù)列的求和公式可得$\frac{a(1-{2}^{7})}{1-2}$=381,解得a=3,
∴頂層有3盞燈,
故選:B.

點(diǎn)評(píng) 本題考查等比數(shù)列的求和公式,由題意構(gòu)造等比數(shù)列是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)中,在區(qū)間(0,2)上遞增的是( 。
A.y=log0.5(x+1)B.$y={log_2}\sqrt{{x^2}-1}$
C.$y={log_2}\frac{1}{x}$D.$y={log_{\frac{1}{2}}}(5-4x+{x^2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,△ABC中,$\overrightarrow{BD}$=2$\overrightarrow{DC}$,$\overrightarrow{AE}$=m$\overrightarrow{AB}$,$\overrightarrow{AF}$=n$\overrightarrow{AC}$,m>0,n>0,那么m+2n的最小值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.按照如下的規(guī)律構(gòu)造數(shù)表:
第一行是:2;
第二行是:2+1,2+3:即3,5;
第三行是:3+1,3+3,5+1,5+3,即:4,6,6,8,

(即從第二行起將上一行的數(shù)的每一項(xiàng)各加1寫出,再各項(xiàng)再加3寫出),若第n行所有的項(xiàng)的和為an;
2
3 5
4 6 6 8
5 7 7 9 7 9 9 11

(1)求a3,a4,a5;
(2)試寫出an+1與an的遞推關(guān)系,并據(jù)此求出數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)Sn=$\frac{{a}_{3}}{{a}_{1}{a}_{2}}$+$\frac{{a}_{4}}{{a}_{2}{a}_{3}}$+…+$\frac{{a}_{n+2}}{{a}_{n}{a}_{n+1}}$(n∈N*),求Sn和$\underset{lim}{n→∞}$Sn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.公差不為零的等差數(shù)列{an}中,a1,a2,a5成等比數(shù)列,且該數(shù)列的前10項(xiàng)和為100,數(shù)列{bn}的前n項(xiàng)和為Sn,且滿足${S_n}=2{b_n}-1,\;\;n∈{N^*}$.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)令${c_n}=\frac{{1+{a_n}}}{{4{b_n}}}$,數(shù)列{cn}的前n項(xiàng)和為Tn,求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在直三棱柱ABC-A1B1C1中,△ABC是等腰直角三角形,AC=BC=AA1=2,D為側(cè)棱AA1的中點(diǎn);
(1)求證:AC⊥平面BCC1B1;
(2)求異面直線B1D與AC所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.?dāng)?shù)列{an}滿足a1=1,an=$\frac{n{a}_{n-1}}{{a}_{n-1}+2n-2}$(n≥2,n∈N*).
(1)求a2,a3,a4的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)bn=(1-$\frac{1}{{2}^{n}}$)an,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.選擇適當(dāng)?shù)姆椒ń庀铝腥切危?br />(1)在△ABC中,b=4,c=13,S△ABC=10,求a;
(2)在△ABC中,a=2$\sqrt{3}$,b=6,A=30°,解此三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知定義在R上的函數(shù)f(x)滿足f(x+1)=-f(x),且f(x)=$\left\{\begin{array}{l}{1,-1<x≤0}\\{-1,0<x≤1}\end{array}\right.$,則下列函數(shù)值為1的是( 。
A.f(2.5)B.f(f(2.5))C.f(f(1.5))D.f(2)

查看答案和解析>>

同步練習(xí)冊(cè)答案