【題目】如圖,在四邊形ABCD中,AB//CD,∠ABD=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF.
(Ⅰ)求證:平面ADE⊥平面BDEF;
(Ⅱ)若二面角CBFD的大小為60°,求CF與平面ABCD所成角的正弦值.
【答案】(1)見解析(2)
【解析】分析:(1)根據(jù)面面垂直的判定定理即可證明平面ADE⊥平面BDEF;
(2)建立空間直角坐標(biāo)系,利用空間向量法即可求CF與平面ABCD所成角的正弦值;也可以應(yīng)用常規(guī)法,作出線面角,放在三角形當(dāng)中來求解.
詳解:(Ⅰ)在△ABD中,∠ABD=30°,由AO2=AB2+BD2-2AB·BDcos30°,
解得BD=,所以AB2+BD2=AB2,根據(jù)勾股定理得∠ADB=90°∴AD⊥BD.
又因?yàn)?/span>DE⊥平面ABCD,AD平面ABCD,∴AD⊥DE.
又因?yàn)?/span>BDDE=D,所以AD⊥平面BDEF,又AD平面ABCD,
∴平面ADE⊥平面BDEF,
(Ⅱ)方法一:
如圖,由已知可得,,則
,則三角形BCD為銳角為30°的等腰三角形.
則.
過點(diǎn)C做,交DB、AB于點(diǎn)G,H,則點(diǎn)G為點(diǎn)F在面ABCD上的投影.連接FG,則
,DE⊥平面ABCD,則平面.
過G做于點(diǎn)I,則BF平面,即角為
二面角CBFD的平面角,則60°.
則,,則.
在直角梯形BDEF中,G為BD中點(diǎn),,,,
設(shè) ,則,,則.
,則,即CF與平面ABCD所成角的正弦值為.
(Ⅱ)方法二:
可知DA、DB、DE兩兩垂直,以D為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系D-xyz.
設(shè)DE=h,則D(0,0,0),B(0,,0),C(-,-,h).
,.
設(shè)平面BCF的法向量為m=(x,y,z),
則所以取x=,所以m=(,-1
取平面BDEF的法向量為n=(1,0,0),
由,解得,則,
又,則,設(shè)CF與平面ABCD所成角為,
則sin=.
故直線CF與平面ABCD所成角的正弦值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)兩實(shí)數(shù)不相等且均不為.若函數(shù)在時(shí),函數(shù)值的取值區(qū)間恰為,就稱區(qū)間為的一個(gè)“倒域區(qū)間”.已知函數(shù).
(1)求函數(shù)在內(nèi)的“倒域區(qū)間”;
(2)若函數(shù)在定義域內(nèi)所有“倒域區(qū)間”的圖象作為函數(shù)的圖象,是否存在實(shí)數(shù),使得與恰好有2個(gè)公共點(diǎn)?若存在,求出的取值范圍:若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.
(1)若a=-2,求B∩A,B∩(UA);(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)以往的成績(jī)記錄,甲、乙兩名隊(duì)員射擊中靶環(huán)數(shù)(環(huán)數(shù)為整數(shù))的頻率分布情況如圖所示.假設(shè)每名隊(duì)員每次射擊相互獨(dú)立.
(Ⅰ)求圖中a的值;
(Ⅱ)隊(duì)員甲進(jìn)行2次射擊.用頻率估計(jì)概率,求甲恰有1次中靶環(huán)數(shù)大于7的概率;
(Ⅲ)在隊(duì)員甲、乙中,哪一名隊(duì)員的射擊成績(jī)更穩(wěn)定?(結(jié)論無需證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底邊為等邊三角形的斜三棱柱ABC﹣A1B1C1中,AA1AB,四邊形B1C1CB為矩形,過A1C作與直線BC1平行的平面A1CD交AB于點(diǎn)D.
(Ⅰ)證明:CD⊥AB;
(Ⅱ)若AA1與底面A1B1C1所成角為60°,求二面角B﹣A1C﹣C1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利用獨(dú)立性檢驗(yàn)的方法調(diào)查高中生的寫作水平與離好閱讀是否有關(guān),隨機(jī)詢問120名高中生是否喜好閱讀,利用2×2列聯(lián)表,由計(jì)算可得K2=4.236
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參照附表,可得正確的結(jié)論是( )
A.有95%的把握認(rèn)為“寫作水平與喜好閱讀有關(guān)”
B.有97.5%的把握認(rèn)為“寫作水平與喜好閱讀有關(guān)”
C.有95%的把握認(rèn)為“寫作水平與喜好閱讀無關(guān)”
D.有97.5%的把握認(rèn)為“寫作水平與喜好閱讀無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示:
(1)求的解析式;
(2)求的單調(diào)區(qū)間和對(duì)稱中心坐標(biāo);
(3)將的圖象向左平移個(gè)單位,再將橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,最后將圖象向上平移1個(gè)單位,得到函數(shù)的圖象,求函數(shù)在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 下列結(jié)論錯(cuò)誤的是
A. 命題:“若,則”的逆否命題是“若,則”
B. “”是“”的充分不必要條件
C. 命題:“, ”的否定是“, ”
D. 若“”為假命題,則均為假命題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com