3.$sin\frac{11π}{3}$的值為( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

分析 利用誘導(dǎo)公式化簡即可計(jì)算出答案.

解答 解:sin$\frac{11π}{3}$=sin(4$π-\frac{π}{3}$)=sin(-$\frac{π}{3}$)=-sin$\frac{π}{3}$=$-\frac{\sqrt{3}}{2}$.
故選A

點(diǎn)評 本題考查誘導(dǎo)公式的化簡和計(jì)算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某校從參加高二年級期末考試的學(xué)生中抽出60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段后畫出如下頻率分布直方圖.觀察圖形的信息,回答下列問題:這次考試的中位數(shù)為73.3 (結(jié)果保留一位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.“a>0,b>0”是“$ab<{({\frac{a+b}{2}})^2}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)向量$\overrightarrow{a}$=(λ,-2),$\overrightarrow$=(λ-1,1),若$\overrightarrow{a}$⊥$\overrightarrow$,則λ=-1或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.為了保護(hù)環(huán)境發(fā)展低碳經(jīng)濟(jì),某單位在國家科研部門的支持下,進(jìn)行技術(shù)攻關(guān),新上了把二氧化碳處理轉(zhuǎn)化為一種可利用的化工產(chǎn)品的項(xiàng)目,經(jīng)測算,該項(xiàng)目月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為f(x)=$\left\{\begin{array}{l}{\frac{1}{3}{x}^{3}-80{x}^{2}+5140x,x∈[120,144]}\\{\frac{1}{2}{x}^{2}-100x+80000,x∈[144,400]}\end{array}\right.$且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為300元,若該項(xiàng)目不獲利,國家將給予補(bǔ)償.
(Ⅰ)當(dāng)x∈[150,300]時,判斷該項(xiàng)目能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家每月至少需要補(bǔ)貼多少元才能使該項(xiàng)目不虧損?
(Ⅱ)該項(xiàng)目每月處理量為多少噸時?才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=loga(x-$\sqrt{2}$+1)+2$\sqrt{2}$(a>0,a≠1)的圖象經(jīng)過定點(diǎn)P,且點(diǎn)P在冪函數(shù)g(x)的圖象上,則g(x)的表達(dá)式為( 。
A.g(x)=x2B.$g(x)=\frac{1}{x}$C.g(x)=x3D.$g(x)={x^{\frac{1}{2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|x2-2x-3|,g(x)=x+a.
(Ⅰ)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;(只需寫出結(jié)論即可)
(Ⅱ)設(shè)函數(shù)h(x)=f(x)-g(x),若h(x)在區(qū)間(-1,3)上有兩個不同的零點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅲ)若存在實(shí)數(shù)m∈[2,5],使得對于任意的x1∈[0,2],x2∈[-2,-1],都有f(x1)-m≥g(2${\;}^{{x}_{2}}$)-5成立,求實(shí)數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點(diǎn)F作直線l與雙曲線交于A,B兩點(diǎn),使得|AB|=4b,若這樣的直線有且僅有兩條,則離心率e的取值范圍是( 。
A.$({1,\frac{{\sqrt{5}}}{2}})$B.$({\sqrt{5},+∞})$C.$({\frac{{\sqrt{5}}}{2},\sqrt{5}})$D.$({1,\frac{{\sqrt{5}}}{2}})∪({\sqrt{5},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,圓(x+2)2+y2=4的圓心為點(diǎn)B,A(2,0),P是圓上任意一點(diǎn),線段AP的垂直平分線l和直線BP相交于點(diǎn)Q,當(dāng)點(diǎn)P在圓上運(yùn)動時,點(diǎn)Q的軌跡方程為${x^2}-\frac{y^2}{3}=1$.

查看答案和解析>>

同步練習(xí)冊答案