3.已知函數(shù)f(x)=-$\frac{1}{2}{x^2}$+4x-3lnx,則下列說法正確的是(  )
A.f(x)的單調(diào)遞減區(qū)間為(1,3)B.x=3是函數(shù)f(x)的極小值點
C.f(x)的單調(diào)遞減區(qū)間為(0,1)∪(3,+∞)D.x=1是函數(shù)f(x)的極小值點

分析 求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值點即可.

解答 解:∵f(x)=-$\frac{1}{2}{x^2}$+4x-3lnx,定義域是(0,+∞),
∴f′(x)=-x+4-$\frac{3}{x}$=-$\frac{(x-1)(x-3)}{x}$,
令f′(x)>0,解得:1<x<3,令f′(x)<0,解得:0<x<1或x>3,
故函數(shù)f(x)在(0,1)遞減,(1,3)遞增,(3,+∞)遞減,
故x=1是函數(shù)的極小值點,
故選:D.

點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)$f(x)=(\sqrt{3}cosx-sinx)sinx$,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期與單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)f(x)在$[{0,\frac{π}{4}}]$上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某四棱錐的三視圖如圖所示,則該四棱錐的外接球的表面積是( 。
A.B.C.12πD.24π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下面幾種推理過程是演繹推理的是( 。
A.某校高二年級有10個班,1班62人,2班61人,3班62人,由此推測各班人數(shù)都超過60人
B.根據(jù)三角形的性質(zhì),可以推測空間四面體的性質(zhì)
C.平行四邊形對角線互相平分,矩形是平行四邊形,所以矩形的對角線互相平分
D.在數(shù)列{an}中,a1=1,an+1=$\frac{{2{a_n}}}{{2+{a_n}}}$,n∈N*,計算a2,a3,由此歸納出{an}的通項公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知F1,F(xiàn)2分別是雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左,右焦點,點F1關(guān)于漸近線的對稱點恰好在以F2為圓心,|OF2|(O為坐標(biāo)原點)為半徑的圓上,則該雙曲線的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知點A(-1,3)、B(3,2)、C(-4,5)、D(-3,4),則向量$\overrightarrow{AB}$在$\overrightarrow{CD}$方向上的投影為(  )
A.$\frac{5\sqrt{2}}{2}$B.-$\frac{5\sqrt{2}}{2}$C.$\frac{5\sqrt{17}}{17}$D.-$\frac{5\sqrt{17}}{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知△ABC中,角A,B,C所對的邊分別為a,b,c,a=1,b=$\sqrt{3}$,B=60°,那么角A等于( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.定義在R上的函數(shù)f(x)滿足f(1)=1,且對任意的x∈R,都有f′(x)<$\frac{1}{2}$,則不等式f(log2x)>$\frac{lo{g}_{2}x+1}{2}$的解集為(  )
A.(1,+∞)B.(0,1)C.(0,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,角A,B,C所對的邊分別為a,b,c,滿足$\frac{sinA-sinC}{sinA+sinB}$=$\frac{a-b}{c}$,b=$\sqrt{7}$,cos2C=$\frac{1}{28}$.
(Ⅰ)求B,a的值;
(Ⅱ)若A>$\frac{π}{6}$,如圖,D為邊BC中點,P是邊AB上動點,求|CP|+|PD|的最小值.

查看答案和解析>>

同步練習(xí)冊答案