18.已知F1,F(xiàn)2分別是雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左,右焦點(diǎn),點(diǎn)F1關(guān)于漸近線的對(duì)稱點(diǎn)恰好在以F2為圓心,|OF2|(O為坐標(biāo)原點(diǎn))為半徑的圓上,則該雙曲線的離心率為2.

分析 首先求出F1到漸近線的距離,利用F1關(guān)于漸近線的對(duì)稱點(diǎn)恰落在以F2為圓心,|OF2|為半徑的圓上,可得直角三角形,即可求出雙曲線的離心率.

解答 解:由題意,F(xiàn)1(-c,0),F(xiàn)2(c,0),
設(shè)一條漸近線方程為y=-$\frac{a}$x,則F1到漸近線的距離為$\frac{bc}{\sqrt{{a}^{2}+^{2}}}$=b.
設(shè)F1關(guān)于漸近線的對(duì)稱點(diǎn)為M,F(xiàn)1M與漸近線交于A,
可得|MF1|=2b,A為F1M的中點(diǎn),
又0是F1F2的中點(diǎn),∴OA∥F2M,則∠F1MF2為直角,
由△MF1F2為直角三角形,
由勾股定理得4c2=c2+4b2
即有3c2=4(c2-a2),即為c2=4a2,
即c=2a,則e=$\frac{c}{a}$=2.
故答案為:2.

點(diǎn)評(píng) 本題主要考查了雙曲線的幾何性質(zhì)以及有關(guān)離心率和漸近線,考查勾股定理的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.△ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊分別為a,b,c,A、B、C成等差數(shù)列,且$\overline{AB}•(\overline{AB}-\overline{AC})=18$.
(1)求ac的值;
(2)若sinA、sinB、sinC也成等差數(shù)列,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\sqrt{3}$sin2x+cos2x-1(x∈R);
(1)寫出函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c,若f(B)=0,$\overrightarrow{BA}•\overrightarrow{BC}$=$\frac{3}{2}$,且a+c=4,試求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$,x∈R,則函數(shù)f(x)的最小值為-2,函數(shù)f(x)的遞增區(qū)間為[$-\frac{π}{6}+kπ,\frac{π}{3}+kπ$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,內(nèi)角A、B、C所對(duì)的邊為a、b、c,且滿足(2a-c)cosB=bcosC.
(1)求角B的值;
(2)若b=$\sqrt{3}$,求a-$\frac{1}{2}$c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=-$\frac{1}{2}{x^2}$+4x-3lnx,則下列說法正確的是(  )
A.f(x)的單調(diào)遞減區(qū)間為(1,3)B.x=3是函數(shù)f(x)的極小值點(diǎn)
C.f(x)的單調(diào)遞減區(qū)間為(0,1)∪(3,+∞)D.x=1是函數(shù)f(x)的極小值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.據(jù)新華社報(bào)道,強(qiáng)臺(tái)風(fēng)“蝴蝶”在廣東登陸.臺(tái)風(fēng)中心最大風(fēng)力達(dá)到12級(jí)以上,大風(fēng)降雨給災(zāi)區(qū)帶來嚴(yán)重的災(zāi)害,不少大樹被大風(fēng)折斷.某路邊一樹干被臺(tái)風(fēng)吹斷后,樹的上半部分折成與地面成45°角,樹干也傾斜為與地面成75°角,樹干底部與樹尖著地處相距20米,則折斷點(diǎn)與樹干底部的距離是(  )
A.$\frac{20\sqrt{6}}{3}$ 米B.10$\sqrt{6}$ 米C.$\frac{10\sqrt{6}}{3}$ 米D.20$\sqrt{2}$ 米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知θ∈(-$\frac{π}{2}$,$\frac{π}{2}$)且sinθ+cosθ=a,其中a∈(0,1),則tanθ的可能取值是( 。
A.-3B.3或$\frac{1}{3}$C.$-\frac{1}{3}$D.-3或$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{1-(x-1)^{2}},0≤x<2}\\{f(x-2),x≥2}\end{array}\right.$,若對(duì)于正數(shù)kn (n∈N*),關(guān)于x的函數(shù)g(x)=f(x)-knx 的零點(diǎn)個(gè)數(shù)恰好為2n+1個(gè),則k12+k22+…+kn2=( 。
A.$\frac{1}{8n}$B.$\frac{n}{n+1}$C.$\frac{n}{4n+4}$D.$\frac{n}{4n+1}$

查看答案和解析>>

同步練習(xí)冊(cè)答案