8.在△ABC中,B(-3,0),C(3,0),直線AB,AC的斜率之積$\frac{4}{9}$,求頂點(diǎn)A的軌跡.

分析 因?yàn)橹本AB、AC的斜率存在,所以先求出直線AB,AC的斜率,再根據(jù)斜率之積為$\frac{4}{9}$,即可得到動(dòng)點(diǎn)A的軌跡方程.

解答 解:設(shè)A(x,y),則 kAB=$\frac{y}{x+3}$,kAC=$\frac{y}{x-3}$,(x≠±3).
由  kAB•kAC=$\frac{y}{x+3}$•$\frac{y}{x-3}$=$\frac{4}{9}$
化簡可得$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{4}$=1,
所以動(dòng)點(diǎn)A的軌跡方程為 $\frac{{x}^{2}}{9}-\frac{{y}^{2}}{4}$=1,(x≠±3).

點(diǎn)評(píng) 本題考查求點(diǎn)的軌跡方程的方法,斜率公式,注意x≠±3,此處是易錯(cuò)點(diǎn),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列四個(gè)結(jié)論中假命題的個(gè)數(shù)是( 。
①垂直于同一直線的兩條直線互相平行;
②平行于同一直線的兩直線平行;
③若直線a,b,c滿足a∥b,b⊥c,則a⊥c;
④若直線a,b是異面直線,則與a,b都相交的兩條直線是異面直線.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=|x-1|,若存在x1,x2∈[a,b],且x1<x2,使f(x1)≥f(x2)成立,則以下對(duì)實(shí)數(shù)a,b的描述正確的是( 。
A.a<1B.a≥1C.b≤1D.b≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=kx2+2kx+1在[-3,2]上的最大值為5,則k的值為$\frac{1}{2}$或-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=$\frac{x}{{{x^2}+4}}$,x∈(-2,2)
(1)判斷f(x)的奇偶性并說明理由;
(2)求證:函數(shù)f(x)在(-2,2)上是增函數(shù);
(3)若f(2+a)+f(1-2a)>0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若f(x)=1-cosx,則f'(α)等于sinα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦點(diǎn)為F,右頂點(diǎn)為A,動(dòng)點(diǎn)M為右準(zhǔn)線上一點(diǎn)(異于右準(zhǔn)線與x軸的交點(diǎn)),設(shè)線段FM交橢圓C于點(diǎn)P,已知橢圓C的離心率為$\frac{2}{3}$,點(diǎn)M的橫坐標(biāo)為$\frac{9}{2}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若∠FPA為直角,求P點(diǎn)坐標(biāo);
(3)設(shè)直線PA的斜率為k1,直線MA的斜率為k2,求k1•k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知曲線C:y=sinx+$\sqrt{3}$cosx在點(diǎn)P(x0,y0)(-$\frac{π}{3}$<x0<0)處的切線斜率為$\sqrt{3}$,則曲線C在點(diǎn)P處的切線方程為$\sqrt{3}$x-y-2+$\frac{\sqrt{3}π}{6}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.滿足條件{1,2}⊆M⊆{1,2,3,4,5}的集合M的個(gè)數(shù)是8.

查看答案和解析>>

同步練習(xí)冊(cè)答案