19.已知函數(shù)f(x)=|x-1|,若存在x1,x2∈[a,b],且x1<x2,使f(x1)≥f(x2)成立,則以下對實數(shù)a,b的描述正確的是( 。
A.a<1B.a≥1C.b≤1D.b≥1

分析 先根據(jù)f(x)=|x|的圖象性質(zhì),推得函數(shù)f(x)=|x-1|的單調(diào)區(qū)間,再依據(jù)條件分析求解.

解答 解:∵f(x)=|x|的圖象是把f(x)=x的圖象中x軸下方的部分對稱到x軸上方,
∴函數(shù)在(-∞,0)上遞減;在(0,+∞)上遞增.
 函數(shù)f(x)=|x-1|的圖象可由f(x)=|x|的圖象向右平移1個單位而得,
∴在(-∞,1]上遞減,在[1,+∞)上遞增,
∵若存在x1,x2∈[a,b],x1<x2,使f(x1)≥f(x2)成立,
∴a<1
 故選:A.

點評 本題考查單調(diào)函數(shù)的性質(zhì)、一次函數(shù)的圖象性質(zhì)及函數(shù)的圖象的平移.f(x+a)圖象可由f(x)的圖象向左(a>0)、向右(a<0)平移|a|個單位得到.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知f(x)=x2-$\frac{a}{x}$(x≠0,常數(shù)a∈R).
(1)討論函數(shù)f(x)的奇偶性,并說明理由;
(2)若f(x)在(-∞,-2]上為減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)是奇函數(shù),g(x)是偶函數(shù),且在公共定義域{x|x∈R且x≠±1}上滿足f(x)+g(x)=$\frac{1}{x-1}$.
(1)求f(x)和g(x)的解析式;
(2)設h(x)=f(x)-g(x),求h($\frac{1}{x}$);
(3)求值:h(2)+h(3)+h(4)+…+h(2016)+h($\frac{1}{2}$)+h($\frac{1}{3}$)+h($\frac{1}{4}$)+…+h($\frac{1}{2016}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知數(shù)列{an}滿足an+1=3an,且a2+a4+a9=9,則log3(a5+a7+a9)=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.函數(shù)y=2x-$\frac{1}{x}+\frac{2}{3},x∈[{1,\frac{3}{2}}]$的值域為[$\frac{5}{3}$,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知f(x)=$\left\{\begin{array}{l}{(4a-1)+4a,x<1}\\{{a}^{x},x≥1}\end{array}\right.$,是(-∞,+∞)上的減函數(shù),則a的取值范圍是[$\frac{1}{7}$,$\frac{1}{4}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=ax2+(2a+1)x-1是偶函數(shù),則實數(shù)a=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在△ABC中,B(-3,0),C(3,0),直線AB,AC的斜率之積$\frac{4}{9}$,求頂點A的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知△OBC中,點A是線段BC的中點,點D是線段OB的一個靠近B的三等分點,設$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AO}$=$\overrightarrow$.
(1)用向量$\overrightarrow{a}$與$\overrightarrow$表示向量$\overrightarrow{OC},\overrightarrow{CD}$;
(2)若$\overrightarrow{OE}=\frac{3}{5}\overrightarrow{OA}$,判斷C、D、E是否共線,并說明理由.

查看答案和解析>>

同步練習冊答案