已知函數(shù)f(x)=
1
1-x
,當(dāng)x≠0時(shí),f(
1
f(x)
)等于
 
考點(diǎn):函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)f(x)的解析式,求出
1
f(x)
,再求f(
1
f(x)
).
解答: 解:∵函數(shù)f(x)=
1
1-x

1
f(x)
=1-x,
∴當(dāng)x≠0時(shí),f(
1
f(x)
)=f(1-x)=
1
1-(1-x)
=
1
x

故答案為:
1
x
點(diǎn)評(píng):本題考查了根據(jù)函數(shù)的解析式求函數(shù)值的應(yīng)用問(wèn)題,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合P={x|y=
x
+1},Q={y|y=x3},則P∩Q=(  )
A、∅B、[0,+∞)
C、(0,+∞)D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1:x-y+3=0,直線l:x-y-1=0,若直線l1關(guān)于直線l的對(duì)稱直線為l2,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2014年巴西世界杯剛結(jié)束,某足球協(xié)會(huì)為了調(diào)查球迷對(duì)本屆世界杯的了解情況,組織了“世界杯你問(wèn)我答一百問(wèn)”活動(dòng),該協(xié)會(huì)從參加活動(dòng)的球迷(人數(shù)不少于1000人)中隨機(jī)抽取12名球迷.進(jìn)行世界杯知識(shí)問(wèn)卷測(cè)試,測(cè)試成績(jī)(百分制)以莖葉圖形式表示如右圖所示,根據(jù)主辦方標(biāo)準(zhǔn).測(cè)試成績(jī)低于80分的為“偽球迷”,不低于80分的為“真球迷”.
(1)寫(xiě)出測(cè)試成績(jī)的中位數(shù)和平均數(shù),并根據(jù)所求數(shù)據(jù)對(duì)參加活動(dòng)的球迷情況進(jìn)行評(píng)估:
(2)將頻率視為概率,根據(jù)樣本估計(jì)總體的思想,若再這批球迷中任選4人進(jìn)行世界杯知識(shí)問(wèn)卷調(diào)查,求至多有1人是“真球迷”的概率.
(3)從抽取的12名球迷中隨機(jī)選取3人,記ξ表示“真球迷”的人數(shù),求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若某算法框圖如圖所示,則輸出的結(jié)果為( 。
A、7B、15C、31D、63

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,三個(gè)內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且
cosA
cosB
=
2c-a
b

(1)求角B;
(2)若a+c=3
3
,S△ABC=
3
3
2
,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀如圖所示的程序框圖,如果輸出的函數(shù)值在區(qū)間[
1
4
1
2
]
內(nèi),那么輸入實(shí)數(shù)x的取值范圍是( 。
A、[-2,-1]
B、(-∞,-1]
C、[-1,2]
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:“x>3”是“x2>9”的充要條件,命題q:“?x0∈R,x0-2>0”的否定是“?x0∈R,x0-2<0”( 。
A、“p∨q”為真
B、“p∧q”為真
C、p真q假
D、p,q均為假

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式
x+2
x+1
<0的解集為{x|a<x<b},點(diǎn)A(a,b)在直線mx+ny+1=0上,其中mn>0,則
2
m
+
1
n
的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案