分析 作出不等式組對應(yīng)的平面區(qū)域,利用平面區(qū)域的形狀,結(jié)合面積公式即可得到結(jié)論.
解答 解:作出不等式組$\left\{\begin{array}{l}{y≤x+1}\\{y≥x}\\{0≤y≤a}\\{x≥0}\end{array}\right.$對應(yīng)的平面區(qū)域:是梯形,
由$\left\{\begin{array}{l}{y=a}\\{y=x}\end{array}\right.$可得A(a,a),$\left\{\begin{array}{l}{y=a}\\{y=x+1}\end{array}\right.$解得B(a-1,a),平面區(qū)域的面積是2,
可得梯形的面積為:a2-$\frac{1}{2}{a}^{2}$$-\frac{1}{2}(a-1)^{2}$=2.
解得a=$\frac{5}{2}$,
故答案為:$\frac{5}{2}$.
點評 本題考查線性規(guī)劃的應(yīng)用,作出不等式組對應(yīng)的平面區(qū)域,利用平面區(qū)域的形狀,結(jié)合面積公式即可得到結(jié)論.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x>0} | B. | {x|-1<x<1} | C. | {x|x>1} | D. | {x|x>0或x<-1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 有且只有一條 | B. | 有兩條 | C. | 有無窮多條 | D. | 必不存在 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com