11.已知扇形OAB的圓心角為4弧度,其面積為2cm2,求扇形的周長及弦AB的長.

分析 利用已知條件求出扇形的半徑,然后利用圓心角求解即可.

解答 解:設扇形的半徑r,扇形OAB的圓心角為4弧度,弧長為:4r,
其面積為2cm2,
可得$\frac{1}{2}×4r×r$=2,解得r=1.
扇形的周長:6.
三角形AOB是等腰三角形,∠AOB=4,
弦AB的長:2sin2.

點評 本題考查扇形的面積以及弦長的求法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.已知一個無窮等比數(shù)列{an}的每一項都等于它以后各項和的k倍,則實數(shù)k的取值范圍是(-∞,-2]∪(0,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知等差數(shù)列{an},公差d>0,前n項和為Sn,且a3+a4=20,a2•a5=91,數(shù)列{bn}的前n項和Tn=1-$\frac{1}{2}$bn
(1)求數(shù)列{an}的通項公式和前n項和Sn
(2)求數(shù)列{bn}的通項公式;
(3)若cn=$\frac{{3}^{n}_{n}}{{a}_{n}•{a}_{n+1}}$,求證:數(shù)列{cn}的前n項和Hn<$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在△ABC中,頂點A(1,3),AB邊上的中線所在直線方程為x-y+1=0,AC邊上中線所在的直線方程為y-2=0,求△ABC各邊所在直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.滿足下列條件的函數(shù)f(x)中,f(x)為偶函數(shù)的是( 。
A.f(ex)=|x|B.f(ex)=e2xC.f(lnx)=lnx2D.f(lnx)=x+$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在數(shù)3和24之間插入兩個數(shù),使這四個數(shù)成等比數(shù)列,則這四個數(shù)的和為45.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.甲、乙兩人進行乒乓球比賽,采用“五局三勝制”,即五局中先勝三局為贏,若每場比賽甲獲勝的概率是$\frac{2}{3}$,乙獲勝的概率是$\frac{1}{3}$,則比賽以甲三勝一負而結束的概率為$\frac{8}{27}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.從區(qū)間[0,1]上隨機取一個實數(shù)a,則關于x的一元二次方程x2-x+a=0無實根的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.如圖所示是一樣本的頻率分布直方圖,若樣本容量為100,則樣本數(shù)據(jù)在區(qū)間[15,20)內的頻數(shù)是( 。
A.50B.40C.30D.14

查看答案和解析>>

同步練習冊答案