18.從區(qū)間[0,1]上隨機取一個實數(shù)a,則關(guān)于x的一元二次方程x2-x+a=0無實根的概率為$\frac{3}{4}$.

分析 根據(jù)關(guān)于x的一元二次方程x2-x+a=0無實根,得到△=1-4a<0,解得:a>$\frac{1}{4}$,從而求出符合條件的事件的概率.

解答 解:若關(guān)于x的一元二次方程x2-x+a=0無實根,
則△=1-4a<0,解得:a>$\frac{1}{4}$,
設(shè)事件“從區(qū)間[0,1]上隨機取一個實數(shù)a,則關(guān)于x的一元二次方程x2-x+a=0無實根”為事件A,
則P(A)=$\frac{1-\frac{1}{4}}{1}$=$\frac{3}{4}$,
故答案為:$\frac{3}{4}$.

點評 本題考查了幾何概型的應(yīng)用,考查二次函數(shù)問題,是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知AB為圓O:(x-1)2+y2=1的直徑,點P為直線x-y+1=0上任意一點,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知扇形OAB的圓心角為4弧度,其面積為2cm2,求扇形的周長及弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.小王的手機使用的是每月300M流量套餐,如圖記錄了小王在4月1日至4月10日這十天的流量使用情況,下列敘述中正確的是(  )
A.1日-10日這10天的平均流量小于9.0M/日
B.11日-30日這20天,如果每天的平均流量不超過11M,這個月總流量就不會超過套餐流量
C.從1日-10日這10天的流量中任選連續(xù)3天的流量,則3日,4日,5日這三天的流量的方差最大
D.從1日-10日這10天中的流量中任選連續(xù)3天的流量,則8日,9日,10日這三天的流量的方差最小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.數(shù)180,300,450的最大公約數(shù)是( 。
A.15B.30C.45D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)α是銳角,若sin(α+$\frac{π}{3}$)=$\frac{4}{5}$+sinα,則cos(2α-$\frac{π}{6}$)=( 。
A.$\frac{12}{25}$B.$\frac{24}{25}$C.-$\frac{24}{25}$D.-$\frac{12}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若a=20.5,b=logπ3,c=log2sin$\frac{2π}{5}$,則a、b、c從小到大的順序是c<b<a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在區(qū)間[0,$\frac{3π}{4}$]上隨機取一個數(shù)x,則時間“sinx+cosx≥1”發(fā)生的概率為(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=a(x-$\frac{1}{x}$)-lnx.
(1)若a=1,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在其定義域內(nèi)為增函數(shù),求a的取值范圍;
(3)求證:$\frac{2×1+1}{1×2}$+$\frac{2×2+1}{2×3}$+…+$\frac{2n+1}{n(n+1)}$>ln(n+1)(n∈N).

查看答案和解析>>

同步練習冊答案