9.已知三點(diǎn)P(5,2)、F1(-6,0)、F2(6,0)那么以F1、F2為焦點(diǎn)且過點(diǎn)P的橢圓的短軸長為(  )
A.3B.6C.9D.12

分析 設(shè)橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),可得:c=6,2a=|PF1|+|PF2|,可得b=$\sqrt{{a}^{2}-{c}^{2}}$.

解答 解:設(shè)橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),
可得:c=6,2a=|PF1|+|PF2|=$\sqrt{1{1}^{2}+{2}^{2}}$+$\sqrt{{1}^{2}+{2}^{2}}$=6$\sqrt{5}$,解得a=3$\sqrt{5}$.
∴b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{(3\sqrt{5})^{2}-{6}^{2}}$=3.
∴橢圓的短軸長為6.
故選:B.

點(diǎn)評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、兩點(diǎn)之間的距離公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.甲乙兩所學(xué)校高三年級分別有1 200人,1 000人,為了了解兩所學(xué)校全體高三年級學(xué)生在該地區(qū)六校聯(lián)考的數(shù)學(xué)成績情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績,并作出了頻數(shù)分布統(tǒng)計(jì)表如表:
甲校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)34815
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)15x32
乙校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)1289
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)1010y3
則x,y的值分別為(  )
A.12,7B.10,7C.10,8D.11,9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{1}{x}$+alnx,a∈R.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)當(dāng)x∈[1,2]時(shí),f(x)的最小值是0,求實(shí)數(shù)a的值;
(3)試問過點(diǎn)P(0,2)可作多少條直線與曲線y=f(x)相切?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx+$\frac{a}{x}$(a∈R).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若方程f(x)=2存在兩個(gè)不同的實(shí)數(shù)解x1、x2,求證:x1+x2>2a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)T(t,0)(t>0),且過點(diǎn)F的直線,交C于A,B.
(I)當(dāng)t=2時(shí),若過T的直線交拋物線C于兩點(diǎn),且兩交點(diǎn)的縱坐標(biāo)乘積為-4,求焦點(diǎn)F的坐標(biāo);
(Ⅱ)如圖,直線AT、BT分別交拋物線C于點(diǎn)P、Q,連接PQ交x軸于點(diǎn)M,證明:|OF|,|OT|,|OM|成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,左、右焦點(diǎn)分別為F1,F(xiàn)2;若圓x2+y2=a2被直線x-y-$\sqrt{2}$=0截得的弦長為2.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過右焦點(diǎn)F2的直線l與橢圓C交于A、B兩點(diǎn),是否存在過右焦點(diǎn)F2的直線l,使得以AB為直徑的圓過左焦點(diǎn)F1,如果存在,求直線l的方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的離心率e=$\frac{\sqrt{3}}{2}$,經(jīng)過橢圓E的下頂點(diǎn)A和右焦點(diǎn)F的直線l的圓C:x2+(y-2b)2=$\frac{27}{4}$相切.
(1)求橢圓E的方程;
(2)若直線m與l垂直,且交橢圓E與P、Q兩點(diǎn),當(dāng)$\overrightarrow{OP}•\overrightarrow{OQ}=-\frac{1}{13}$(O是坐標(biāo)原點(diǎn))時(shí),求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=|x+a|-|x-a|.
(Ⅰ)當(dāng)a=2時(shí),解不等式f(x)≥2;
(Ⅱ)若y>0,證明:f(x)≤a2y+$\frac{1}{y}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),過其右焦點(diǎn)F作圓x2+y2=a2的兩條切線,切點(diǎn)記作C,D,原點(diǎn)為O,∠COD=$\frac{π}{2}$,則雙曲線的離心率為( 。
A.$\frac{3}{2}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案