【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若,,且存在不相等的實(shí)數(shù),,使得,求證:.

【答案】(1)見證明;(2)見證明

【解析】

(1)求得函數(shù)的導(dǎo)數(shù),分類討論,即可求解函數(shù)的單調(diào)區(qū)間;

(2)由存在不相等的實(shí)數(shù),使得矛盾,得到,再由,轉(zhuǎn)化為證明,轉(zhuǎn)化為證明,利用換元法和導(dǎo)數(shù),求得函數(shù)的單調(diào)性與最值,即可求解.

(1)由題意,函數(shù),可得,

當(dāng)時(shí),因?yàn)?/span>,所以,所以,

故函數(shù)上單調(diào)遞增;

當(dāng)時(shí),,所以

故函數(shù)單調(diào)遞增;當(dāng)時(shí),,

解得,

解得,

所以函數(shù)在區(qū)間上單調(diào)遞減,

在區(qū)間和區(qū)間上單調(diào)遞增.

綜上所述,當(dāng)時(shí),函數(shù)上單調(diào)遞增,

當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞減,

在區(qū)間和區(qū)間上單調(diào)遞增.

(2)由題知,則.

當(dāng)時(shí),,所以上單調(diào)遞增,

與存在不相等的實(shí)數(shù),使得矛盾,所以.

,得

所以,不妨設(shè)

因?yàn)?/span>,所以

欲證,只需證

只需證,

,等價(jià)于證明,即證,

,

所以在區(qū)間上單調(diào)遞減,所以,

從而得證,于是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】謝爾賓斯基三角形(Sierpinski triangle)是一種分形,由波蘭數(shù)學(xué)家謝爾賓斯基在1915年提出.在一個(gè)正三角形中,挖去一個(gè)“中心三角形”(即以原三角形各邊的中點(diǎn)為頂點(diǎn)的三角形),然后在剩下的小三角形中又挖去一個(gè)“中心三角形”,我們用白色三角形代表挖去的部分,黑色三角形為剩下的部分,我們稱此三角形為謝爾賓斯基三角形.若在圖(3)內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自謝爾賓斯基三角形的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】工廠抽取了在一段時(shí)間內(nèi)生產(chǎn)的一批產(chǎn)品,測(cè)量一項(xiàng)質(zhì)量指標(biāo)值,繪制了如圖所示的頻率分布直方圖.

(1)計(jì)算該樣本的平均值,方差;(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)

(2)若質(zhì)量指標(biāo)值在之內(nèi)為一等品.

(i)用樣本估計(jì)總體,問該工廠一天生產(chǎn)的產(chǎn)品是否有以上為一等品?

(ii)某天早上、下午分別抽檢了50件產(chǎn)品,完成下面的表格,并根據(jù)已有數(shù)據(jù),判斷是否有的把握認(rèn)為一等品率與生產(chǎn)時(shí)間有關(guān)?

一等品個(gè)數(shù)

非一等品個(gè)數(shù)

總計(jì)

早上

36

50

下午

26

50

總計(jì)

附:.

0.25

0.15

0.10

0.050

0.010

0.001

1.323

2.072

2.706

3.841

6.635

10.828

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分12分,1小問5分,2小問7分

圖,橢圓的左、右焦點(diǎn)分別為的直線交橢圓于兩點(diǎn),且

1求橢圓的標(biāo)準(zhǔn)方程

2求橢圓的離心率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù)的單調(diào)性

(2)函數(shù),且.若在區(qū)間(0,2)內(nèi)有零點(diǎn),求實(shí)數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a0,且a≠1.命題P:函數(shù)fx)=logax在(0,+∞)上為增函數(shù);命題Q:函數(shù)gx)=x22ax+4有零點(diǎn).

1)若命題P,Q滿足PQ假,求實(shí)數(shù)a的取值范圍;

2)命題S:函數(shù)yfgx))在區(qū)間[2+∞)上值恒為正數(shù).若命題S為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著手機(jī)的發(fā)展,“微信”逐漸成為人們支付購物的一種形式.某機(jī)構(gòu)對(duì)“使用微信支付”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了50人,他們年齡的頻數(shù)分布及對(duì)“使用微信支付”贊成人數(shù)如下表.

年齡

(單位:歲)

,

,

,

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(Ⅰ)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為“使用微信支付”的態(tài)度與人的年齡有關(guān);

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計(jì)

贊成

不贊成

合計(jì)

(Ⅱ)若從年齡在的被調(diào)查人中按照贊成與不贊成分層抽樣,抽取5人進(jìn)行追蹤調(diào)查,在5人中抽取3人做專訪,求3人中不贊成使用微信支付的人數(shù)的分布列和期望值.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記焦點(diǎn)在同一條軸上且離心率相同的橢圓為“相似橢圓”.已知橢圓,以橢圓的焦點(diǎn)為頂點(diǎn)作相似橢圓.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),且與橢圓僅有一個(gè)公共點(diǎn),試判斷的面積是否為定值(為坐標(biāo)原點(diǎn))若是,求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(1)設(shè)函數(shù)(其中的導(dǎo)函數(shù)),判斷上的單調(diào)性;

(2)若函數(shù)在定義域內(nèi)無零點(diǎn),試確定正數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案