15.下列結(jié)論中正確的是( 。
A.a>b⇒a-c<b-cB.a>b⇒a2>b2C.a>b>0⇒$\frac{1}{a}<\frac{1}$D.a>b⇒ac2>bc2

分析 利用不等式的基本性質(zhì)即可判斷出結(jié)論.

解答 解:A.a(chǎn)>b⇒a-c>b-c,因此A不成立.
B.取a=-1,b=-2時不成立.
C.由a>b>0,則$\frac{a}{ab}>\frac{ab}$,即$\frac{1}$>$\frac{1}{a}$,成立.
D.c=0時不成立.
綜上可得:只有C成立.
故選:C.

點(diǎn)評 本題考查了不等式的基本性質(zhì),考查推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如表提供平羅中學(xué)某班研究性課題小組在技術(shù)改造后制作一玩具模型過程中記錄的產(chǎn)量x(個)與相應(yīng)的花費(fèi)資y(百元)的幾組對照數(shù)據(jù)
x3 4 5 6
y2.5 3 4 4.5
(1)請根據(jù)如表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(2)問該小組技術(shù)改造后制作10個這種玩具模型估計(jì)需要多少資金?
(附:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$,其中$\overline{x}$,$\overline{y}$為樣本平均值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若“?x0∈R,x02+ax0+1<0”是假命題,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,2)B.(-∞,2]C.(-∞,-2]∪[2,+∞)D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知兩圓的方程分別為x2+y2-4x=0和x2+y2-4y=0公共弦所在直線方程是x-y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,矩形ABCD中,AB=2AD,E為邊AB的中點(diǎn),將△ADE沿直線DE翻折成△A1DE.若M為線段A1C的中點(diǎn),則在△ADE翻折過程中,下面四個命題中正確是①④.(填序號即可)
①|(zhì)BM|是定值;
②總有CA1⊥平面A1DE成立;
③存在某個位置,使DE⊥A1C;
④存在某個位置,使MB∥平面A1DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=$\frac{1}{3}{x^3}$-4x+4在區(qū)間[0,3]上的最大值與最小值分別是( 。
A.$1,-\frac{4}{3}$B.$4,-\frac{4}{3}$C.$4,\frac{4}{3}$D.$\frac{4}{3},-4$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,DP⊥x軸,點(diǎn)M在DP的延長線上,且$\frac{{|{DM}|}}{{|{DP}|}}=\frac{3}{2}$,當(dāng)點(diǎn)P在圓x2+y2=4上運(yùn)動時,點(diǎn)M形成的軌跡為L.
(1)求軌跡L的方程;
(2)已知定點(diǎn)E(-2,0),若直線y=kx+2(k≠0)與點(diǎn)M的軌跡L交于A,B兩點(diǎn),問:是否存在實(shí)數(shù)k,使以AB為直徑的圓過點(diǎn)E?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.解不等式|x-1|-|x-2|>$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)$f(x)=1+\frac{x}{2}-sinx,x∈(0,2π)$,則 f(x)的單調(diào)減區(qū)間是(0,$\frac{π}{3}$),($\frac{5π}{3}$,2π).

查看答案和解析>>

同步練習(xí)冊答案