【題目】已知圓,橢圓的短半軸長(zhǎng)等于圓的半徑,且過(guò)右焦點(diǎn)的直線與圓相切于點(diǎn).
(1)求橢圓的方程;
(2)若動(dòng)直線與圓相切,且與相交于兩點(diǎn),求點(diǎn)到弦的垂直平分線距離的最大值.
【答案】(1)(2)最大值為.
【解析】
(1)由條件知,,求出過(guò)右焦點(diǎn)的直線與圓相切于點(diǎn)直線方程,再利用點(diǎn)到直線的距離公式,可得出,從而,即可得橢圓的方程;
(2)設(shè)點(diǎn)到弦的垂直平分線的距離為,
①若直線軸,則弦的垂直平分線為軸,所以,若直線軸,則弦的垂直平分線為軸,所以.
②設(shè),的中點(diǎn)坐標(biāo)為,利用點(diǎn)差法求出,進(jìn)而得出直線的方程為,再根據(jù)直線與圓相切,利用點(diǎn)到直線的距離公式,得出,從而得出弦的垂直平分線方程為,最后再利用點(diǎn)到直線的距離公式,即可求出點(diǎn)到弦的垂直平分線的距離,結(jié)合運(yùn)用基本不等式求出距離的最大值.
解:(1)由條件知,所以,
設(shè)橢圓右焦點(diǎn)坐標(biāo)為,
則過(guò)該點(diǎn)與圓相切于點(diǎn)的直線方程為:
,
化簡(jiǎn)得:,
圓到直線的距離等于半徑1,即,
解得:,從而 ,
所以橢圓C的方程為: .
(2)設(shè)點(diǎn)到弦的垂直平分線的距離為,
①若直線軸,則弦的垂直平分線為軸,所以,
若直線軸,則弦的垂直平分線為軸,所以.
②設(shè),的中點(diǎn)坐標(biāo)為,
由點(diǎn)在橢圓上,得
①-②得,,
即,
所以直線的方程為:,
化簡(jiǎn)得:.
因?yàn)橹本與圓相切,所以,
化簡(jiǎn)得:,
又因?yàn)橄?/span>的垂直平分線方程為:,
即.
所以,點(diǎn)到弦的垂直平分線的距離為:
.
當(dāng)且僅當(dāng)時(shí),取等號(hào).
所以點(diǎn)到弦的垂直平分線的距離最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列A: , ,… ().如果對(duì)小于()的每個(gè)正整數(shù)都有 < ,則稱(chēng)是數(shù)列A的一個(gè)“G時(shí)刻”.記“是數(shù)列A的所有“G時(shí)刻”組成的集合.
(1)對(duì)數(shù)列A:-2,2,-1,1,3,寫(xiě)出的所有元素;
(2)證明:若數(shù)列A中存在使得>,則 ;
(3)證明:若數(shù)列A滿(mǎn)足- ≤1(n=2,3, …,N),則的元素個(gè)數(shù)不小于 -.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),將C上每一點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的3倍,得曲線C1.以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求C1的極坐標(biāo)方程
(2)設(shè)M,N為C1上兩點(diǎn),若OM⊥ON,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)M到定點(diǎn)F1(-2,0)和F2(2,0)的距離之和為.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)設(shè)N(0,2),過(guò)點(diǎn)P(-1,-2)作直線l,交曲線C于不同于N的兩點(diǎn)A,B,直線NA,NB的斜率分別為k1,k2,求k1+k2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)隨機(jī)詢(xún)問(wèn)110名性別不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:
男 | 女 | 合計(jì) | |
愛(ài)好 | 40 | 20 | 60 |
不愛(ài)好 | 20 | 30 | 50 |
合計(jì) | 60 | 50 | 110 |
由K2=,
附表:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
參照附表,得到的正確結(jié)論是( )
A.在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B.在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
C.有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D.有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為,其中為參數(shù),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)P的極坐標(biāo)為,直線l的極坐標(biāo)方程為.
(1)求曲線C的普通方程與直線l的直角坐標(biāo)方程;
(2)若Q是曲線C上的動(dòng)點(diǎn),M為線段PQ的中點(diǎn),求點(diǎn)M到直線l的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)十人各拿一只水桶,同到水龍頭前打水,設(shè)水龍頭注滿(mǎn)第i(i=1,2,…,10)個(gè)人的水桶需Ti分鐘,假設(shè)Ti各不相同,當(dāng)水龍頭只有一個(gè)可用時(shí),應(yīng)如何安排他(她)們的接水次序,使他(她)們的總的花費(fèi)時(shí)間(包括等待時(shí)間和自己接水所花費(fèi)的時(shí)間)最少( )
A. 從Ti中最大的開(kāi)始,按由大到小的順序排隊(duì)
B. 從Ti中最小的開(kāi)始,按由小到大的順序排隊(duì)
C. 從靠近Ti平均數(shù)的一個(gè)開(kāi)始,依次按取一個(gè)小的取一個(gè)大的的擺動(dòng)順序排隊(duì)
D. 任意順序排隊(duì)接水的總時(shí)間都不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】樹(shù)立和踐行“綠水青山就是金山銀山,堅(jiān)持人與自然和諧共生”的理念越來(lái)越深入人心,已形成了全民自覺(jué)參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站推出了關(guān)于生態(tài)文明建設(shè)進(jìn)展情況的調(diào)查,大量的統(tǒng)計(jì)數(shù)據(jù)表明,參與調(diào)查者中關(guān)注此問(wèn)題的約占80%.現(xiàn)從參與調(diào)查的人群中隨機(jī)選出人,并將這人按年齡分組:第1組,第2組,第3組,第4 組,第5組,得到的頻率分布直方圖如圖所示
(1) 求的值
(2)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取人,再?gòu)倪@人中隨機(jī)抽取人進(jìn)行問(wèn)卷調(diào)查,求在第1組已被抽到人的前提下,第3組被抽到人的概率;
(3)若從所有參與調(diào)查的人中任意選出人,記關(guān)注“生態(tài)文明”的人數(shù)為,求的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上,且.
(1)求拋物線的方程;
(2)已知點(diǎn),延長(zhǎng)交拋物線于點(diǎn),證明:以點(diǎn)為圓心且與直線相切的圓,必與直線相切.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com